Journal of Materials Science

, Volume 44, Issue 12, pp 3035–3042 | Cite as

Modified single fiber fragmentation test procedure to study water degradation of the fiber/matrix interface toughness of glass/vinylester

  • Felipe A. RamirezEmail author
  • Leif A. Carlsson


A modified single fiber fragmentation test (SFFT) procedure, that permits separation of the fiber break and fiber/matrix (F/M) debond propagation events, was employed to characterize the (F/M) interface toughness of dry and water saturated E-glass/vinylester. By focusing solely on the debond propagation event, and by measuring the critical load for debond propagation, fracture mechanic analysis enabled determination of the fracture toughness of the fiber/matrix interface. After immersion in seawater, the interface was substantially degraded. The fracture toughness was reduced by approximately a factor of two.


Fracture Toughness Energy Release Rate Fiber Fracture Interface Shear Strength Fiber Break 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support for this work at Florida Atlantic University from ONR grant No. N00014-05-1-0341 managed by Dr. Yapa Rajapakse. Thanks are due to Shawn Pennell for the art work.


  1. 1.
    Ray BC (2006) J Colloid Interface Sci 298:111CrossRefGoogle Scholar
  2. 2.
    Rao V, Herrera-Franco PJ, Ozzelo AD, Drzal LT (1991) J Adhesion 34:65CrossRefGoogle Scholar
  3. 3.
    Cox HL (1952) Br J Appl Phys 3:72CrossRefGoogle Scholar
  4. 4.
    Kelly A, Tyson WR (1965) J Mech Phys Solids 13:329CrossRefGoogle Scholar
  5. 5.
    Drzal LT, Rich MJ, Camping JD, Park WJ (1980) Proceedings of 35th annual technical conference reinforced plastics/composites institute, Paper 20-C:1. SPI, New OrleansGoogle Scholar
  6. 6.
    Kim BW, Nairn JA (2002) J Compos Mater 36:1825CrossRefGoogle Scholar
  7. 7.
    Ramirez FA, Carlsson LA, Acha BA (2008) J Mater Sci 43:5230. doi: CrossRefGoogle Scholar
  8. 8.
    Cervenka AJ, Young RJ, Kueseng K (2005) Compos Part A 36:1020CrossRefGoogle Scholar
  9. 9.
    Kobiki A, Kawada H (2005) JSME Int J Series A: Solid Mech Mater Eng 48:183CrossRefGoogle Scholar
  10. 10.
    Nairn JA, Liu YC (1996) Compos Interfaces 4:241CrossRefGoogle Scholar
  11. 11.
    Nairn JA, Liu YC (1997) Int J Solids Struct 34:1255CrossRefGoogle Scholar
  12. 12.
    Nairn JA (2000) Int J Fract 105:243CrossRefGoogle Scholar
  13. 13.
    Liu HY, Mai YW, Ye L, Zhou LM (1997) J Mater Sci 32:633. doi: CrossRefGoogle Scholar
  14. 14.
    Wagner HD, Nairn JA, Detassis M (1995) Appl Compos Mater 2:107CrossRefGoogle Scholar
  15. 15.
    Ramirez FA, Carlsson LA, Acha BA (2008) Compos Part A (in press)Google Scholar
  16. 16.
    Feih S, Wonsyld K, Minzari D, Westmann P, Liholt H (2004) Testing procedure for the single fiber fragmentation test. Riso National Laboratory, Riso-R-1483(EN), Roskilde, DenmarkGoogle Scholar
  17. 17.
    Daniel IM, Ishai O (2006) Engineering mechanics of composite materials. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Harris B, Morley J, Phillips DC (1975) J Mater Sci 10:2050. doi: CrossRefGoogle Scholar
  19. 19.
    Kim BW, Nairn JA (2002) J Mater Sci 37:3965. doi: CrossRefGoogle Scholar
  20. 20.
    Ramirez FA (2008) Master’s Thesis. Department of Mechanical Engineering Florida Atlantic University, FloridaGoogle Scholar
  21. 21.
    Chua PS, Piggott MR (1985) Compos Sci Technol 22:185CrossRefGoogle Scholar
  22. 22.
    Baillie C (1991) PhD Thesis. Department of Materials Science and Engineering University of Surrey, SurreyGoogle Scholar
  23. 23.
    Whitney JM, Drzal LT (1987) Toughened Compos ASTM STP 937:179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations