Journal of Materials Science

, Volume 44, Issue 12, pp 3020–3025 | Cite as

Preparation and electrochemical behavior of methylene blue intercalated into layered niobate K4Nb6O17

  • Xiaobo Zhang
  • Dongsheng Feng
  • Meifeng Chen
  • Zhidan Ding
  • Zhiwei TongEmail author


K4Nb6O17 nano-layered compound was obtained by solid-phase synthesis and then methylene blue (MB) was intercalated into layered niobate K4Nb6O17 interlayer I by a two-step guest-guest exchange method using the intercalation compound, methyl viologen (MV2+)–K4Nb6O17, as precursor. The optically transparent MB+–K4Nb6O17 nanocomposite thin film has been characterized by XRD, IR, TGA, elemental analysis, UV, and electrochemical measurements. It was estimated that the intercalated MB+ ions are mainly aggregated. The cyclic voltammogram of the MB+–K4Nb6O17 nanocomposite thin film exhibited a fine diffusion-controlled cathodic process, which hints the possibility of being utilized as an electrode modifying material.


Methylene Blue Methylviologen Thermal Gravimetric Analysis Hybrid Film Intercalation Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the CREST program of the Japan Science and Technology Agency (JST). We are grateful to young and middle aged academic leaders of Jiangsu Province universities’ “blue and green blue project.” This work is also be supported by National Natural Science Foundation of China (Grant No. 50873042).


  1. 1.
    Centi G, Perathoner S (2008) Microporous Mesoporous Mater 107:3CrossRefGoogle Scholar
  2. 2.
    Schottenfeld JA, Benesi AJ, Stephens PW, Chen GG, Eklund PC, Mallouk TE (2005) J Solid State Chem 178:2313CrossRefGoogle Scholar
  3. 3.
    Machida M, Ma XW, Taniguchi H, Yabunaka J, Kijima T (2000) J Mol Cat A Chem 155:131CrossRefGoogle Scholar
  4. 4.
    Paek MJ, Kim TW, Hwang SJ (2008) J Phys Chem Solid 69:1444CrossRefGoogle Scholar
  5. 5.
    Forti JC, Manzo-Robledo A, Kokoh KB, de Andrade AR, Alonso-Vante N (2006) Electrochim Acta 51:2800CrossRefGoogle Scholar
  6. 6.
    Matsumoto Y, Unal U, Kimura Y, Ohashi S, Izawa K (2005) Phys Chem B 109:12748CrossRefGoogle Scholar
  7. 7.
    Kudo A, Sakata T (1996) J Phys Chem 100:17323CrossRefGoogle Scholar
  8. 8.
    Gasperin M, Le Bihan MT (1980) J Solid State Chem 33:83CrossRefGoogle Scholar
  9. 9.
    Gasperin M, Le Bihan MT (1982) J Solid State Chem 43:346CrossRefGoogle Scholar
  10. 10.
    Nakato T, Sugahara Y, Kuroda K, Kato C (1991) Mater Res Soc Symp Proc 233:169CrossRefGoogle Scholar
  11. 11.
    Mishra SP, Singh VK, Towaro D (1998) Appl Radiat Isot 49:1467CrossRefGoogle Scholar
  12. 12.
    Kinomura N, Kumada N, Muto F (1985) J Chem Soc Dalton Trans 2349Google Scholar
  13. 13.
    Nunes LM, de Souza AG, de Farias RF (2001) J Alloys Compd 319:94CrossRefGoogle Scholar
  14. 14.
    Nakato T, Kuroda K, Kato C (1989) J Chem Soc Chem Commun 1144Google Scholar
  15. 15.
    Nakato T, Kuroda K, Kato C (1992) Chem Mater 4:128CrossRefGoogle Scholar
  16. 16.
    Nakato T, Kuroda K, Kato C (1993) Catal Today 16:471CrossRefGoogle Scholar
  17. 17.
    Tong ZW, Takagi S, Shimada T, Tachibana H, Inoue H (2006) J Am Chem Soc 128:684CrossRefGoogle Scholar
  18. 18.
    Yao K, Nishimura S, Ma T, Okamoto K, Inoue K, Abe E, Tateyama H, Yamagishi A (2001) J Electroanal Chem 510:144CrossRefGoogle Scholar
  19. 19.
    Nakato T, Kusunoki K, Yoshizawa K, Kuroda K, Kaneko M (1995) J Phys Chem 99:17896CrossRefGoogle Scholar
  20. 20.
    Furube A, Shiozawa T, Ishikawa A, Wada A, Domen K, Hirose C (2002) J Phys Chem B 106:3065CrossRefGoogle Scholar
  21. 21.
    Yao K, Nishimura S, Imai Y, Wang HZ, Ma TL, Abe E, Tateyama H, Yamagishi A (2003) Langmuir 19:321CrossRefGoogle Scholar
  22. 22.
    Tong ZW, Takagi S, Tachibana H, Takagi K, Inoue H (2005) J Phys Chem B 109:21612CrossRefGoogle Scholar
  23. 23.
    Tong ZW, Takagi S, Tachibana H, Takagi K, Inoue H (2005) Chem Lett 34:608CrossRefGoogle Scholar
  24. 24.
    Shinozaki R, Nakato T (2004) Langmuir 20:7583CrossRefGoogle Scholar
  25. 25.
    Bizeto MA, Constantino VRL (2005) Microporous Mesoporous Mater 83:212CrossRefGoogle Scholar
  26. 26.
    Bizeto MA, de Faria DLA, Constantino VRL (2002) J Mater Sci 37:265. doi: CrossRefGoogle Scholar
  27. 27.
    Yao H, Li N, Xu S, Xu JZ, Zhu JJ, Chen HY (2005) Biosens Bioelectron 21:372CrossRefGoogle Scholar
  28. 28.
    Lazarin AM, Airoldi C (2004) Anal Chim Acta 523:89CrossRefGoogle Scholar
  29. 29.
    David GT, Xavier D, Nieves CP, José AA (2007) J Photochem Photobiol A Chem 187:45CrossRefGoogle Scholar
  30. 30.
    Arvand M, Sohrabnezhad Sh, Mousavi MF, Shamsipur M, Zanjanchi MA (2003) Anal Chim Acta 491:193CrossRefGoogle Scholar
  31. 31.
    Dilgin Y, Dursun Z, Nisli G, Gorton L (2005) Anal Chim Acta 542:162CrossRefGoogle Scholar
  32. 32.
    Yang XS, Chen X, Zhang X, Yang WS, Evans DG (2008) Sens Actuators B 129:784CrossRefGoogle Scholar
  33. 33.
    Kaito R, Kuroda K, Ogawa M (2003) J Phys Chem B 107:4043CrossRefGoogle Scholar
  34. 34.
    Unal U, Matsumoto Y, Tamoto N, Koinuma M, Machida M, Izawa K (2006) J Solid State Chem 179:33CrossRefGoogle Scholar
  35. 35.
    Nasssu K, Shiever WJ, Bernstein LJ (1969) J Electrochem Soc 116:348CrossRefGoogle Scholar
  36. 36.
    Klika Z, Čapková P, Horáková P, Valášková M, Malý P, Macháň R, Pospíšil M (2007) J Colloid Interface Sci 311:14CrossRefGoogle Scholar
  37. 37.
    Yan Y, Zhang M, Gong K, Su L, Guo Z, Mao L (2005) Chem Mater 17:3457CrossRefGoogle Scholar
  38. 38.
    Jehng JM, Wachs IE (1991) Chem Mater 3:100CrossRefGoogle Scholar
  39. 39.
    Guo X, Hou W, Bao G, Yan Q (2006) Solid State Ionics 177:1293CrossRefGoogle Scholar
  40. 40.
    Ghanadzadeh A, Zeini A, Kashef A, Moghadam M (2008) J Mol Liq 138:100CrossRefGoogle Scholar
  41. 41.
    Guo RG, Fan GK, Liu TQ (2000) Acta Chim Sin 58:636Google Scholar
  42. 42.
    Ramasamy V, Anandalakshmi K (2008) Spectrochim Acta A 70:25CrossRefGoogle Scholar
  43. 43.
    He XW, Feng XZ, Shen HX (1995) J Anal Sci 11:1CrossRefGoogle Scholar
  44. 44.
    Galagan Y, Su WF (2008) J Photochem Photobiol A Chem 195:378CrossRefGoogle Scholar
  45. 45.
    Fergus G, Carla CS, Miguel GN (1994) Langmuir 10:3749CrossRefGoogle Scholar
  46. 46.
    Žutić V, Svetličić V, Lovrić M, Ružić I, Chevalet J (1984) J Electroanal Chem 177:253CrossRefGoogle Scholar
  47. 47.
    de Araujo Nicolai SH, Rodrigues PRP, Agostinho SML, Rubim JC (2002) J Electroanal Chem 527:103CrossRefGoogle Scholar
  48. 48.
    Liao F, Zhu QT, He XY, Ai Z, Cai DC (2007) Chem Rev Appl 19Google Scholar
  49. 49.
    Xian YZ, Liu F, Xian Y, Zhou YY, Jin LT (2006) Electrochim Acta 51:6527CrossRefGoogle Scholar
  50. 50.
    Chen HY, Ju HX, Xun YG (1994) Anal Chem 66:4538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaobo Zhang
    • 1
  • Dongsheng Feng
    • 1
  • Meifeng Chen
    • 1
  • Zhidan Ding
    • 1
  • Zhiwei Tong
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringHuaihai Institute of TechnologyLianyungangPeople’s Republic of China
  2. 2.SORST, Japan Science and Technology Agency (JST)Kawaguchi-shi, SaitamaJapan

Personalised recommendations