Journal of Materials Science

, Volume 44, Issue 13, pp 3319–3343 | Cite as

On the shock compression of polycrystalline metals

  • N. K. BourneEmail author
  • J. C. F. Millett
  • G. T. GrayIII


At the present time, materials are being considered for use in increasingly extreme environments; extreme in terms of both the magnitude of the imposed pressures and stresses they encounter and the speed of the loading applied. Recent advances in understanding the continuum behaviour of condensed matter have been made using novel loading and ultrafast diagnostics. This insight has indicated that in the condensed phase, the response is driven by the defect population existing within the microstructure which drives plastic flow in compression as well as damage evolution and failure processes. This article discusses shock compression results, focusing upon research conducted on cubic-structured metals but also giving an overview of results on hexagonal-close-packed (HCP) metals and alloys. In the past, shock physics has treated materials as homogeneous continua and has represented the compressive behaviour of solids using an adaptation of solid mechanics. It is clear that the next generation of constitutive models must treat physical mechanisms operating at the micro- and mesoscale to adequately describe metals for applications under extreme environments. Derivation of such models requires idealized modes of loading which limits the range of hydrostatic or impact driven experimental techniques available to four principle groups. These are laser-induced plasma loading, Z pinch devices, compressed gas and powder-driven launchers and energetic drives and diamond anvil cells (DACs). Whilst each technique or device discussed brings unique advantages and core competencies, it will be shown that launchers are most capable of covering the spectrum of important and relevant mechanisms since only they can simultaneously access the material microstructural ‘bulk’ dimensions and timescales that control behaviour observed at the continuum. Shock experiments on a selection of metals whose response is regarded as typical are reviewed in this article, and sensors and techniques are described that allow the interpretation of the compression that results from idealized step loading on a target. Real-time imaging or X-ray techniques cannot at present access bulk states at the correct microstructural resolution, over a macroscopic volume or at rates that would reveal mechanisms occurring. It is controlled recovery experiments that provide the link between the microstructure and the continuum state that facilitates understanding of the effect of mesoscale properties upon state variables. Five metals are tracked through various shock-loading techniques which show the following characteristic deformation features; a low Peierls stress and easy slip allow FCC materials to develop dislocation cells and work-harden during the shock process, whereas the higher resistance to dislocation motion in BCC-structured materials and the lower symmetry in HCP metals slows the development of the microstructure and favours deformation twinning as an additional deformation mechanism to accommodate shock compression. Thus not only energy thresholds, but also operating kinetics, must be understood to classify the response of metals and alloys to extreme loading environments. Typical engineering materials possess a baseline microstructure but also a population of defects within their volumes. It is the understanding of these statistical physical relationships and their effects upon deformation mechanisms and defect storage processes that will drive the development of materials for use under extreme conditions in the future.


Ni3Al Shock Loading Longitudinal Stress Lateral Stress Diamond Anvil Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



NKB acknowledges the efforts of students who have worked on these issues and the funding bodies within UK government who have supported this work including EPSRC, DSTL, AWE and QQ. Also the useful discussions with workers in the different experimental and modelling techniques are discussed. GTG acknowledges the support of Los Alamos National Laboratory that is operated by LANS, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396 and the Joint DoD/DOE Munitions Technology Development Program. © British Crown Copyright 2009/MOD.


  1. 1.
    Meyers MA, Aimone CT (1982) J Met 35:A55Google Scholar
  2. 2.
    Hopkinson B (1905) Proc R Soc Lond 74:498CrossRefGoogle Scholar
  3. 3.
    Hopkinson B (1914) Proc R Soc Lond A 89:411CrossRefGoogle Scholar
  4. 4.
    Hopkinson J (1872) Proc Manch Lit Philos Soc 11:40Google Scholar
  5. 5.
    Armstrong RW, Walley SM (2008) Int Mater Rev 53(3):105CrossRefGoogle Scholar
  6. 6.
    Field JE, Walley SM, Bourne NK, Huntley JM (1994) J Phys IV France Colloq C8 (DYMAT 94) 4:3Google Scholar
  7. 7.
    Edwards M (2006) Mater Sci Technol 22:453CrossRefGoogle Scholar
  8. 8.
    Tresca H (1878) Proc Inst Mech Eng 30:301CrossRefGoogle Scholar
  9. 9.
    Barré de Saint Venant AJC (1883) Théorie de l’Élasticité des Corps Solides de Clebsch. Dunod, Paris, p 480a–d (final note to para 60)Google Scholar
  10. 10.
    Orowan E (1946) Trans Inst Eng Shipbuild Scotl 89:165Google Scholar
  11. 11.
    Taylor GI (1946) J Inst Civil Eng 26:486CrossRefGoogle Scholar
  12. 12.
    Whiffin AC (1948) Proc R Soc Lond A 194:300CrossRefGoogle Scholar
  13. 13.
    Kolsky H (1949) Proc Phys Soc Lond B 62B:676CrossRefGoogle Scholar
  14. 14.
    Gray GT III (2000) In: ASM handbook, mechanical testing and evaluation. ASM International, Materials Park, OH, p 462Google Scholar
  15. 15.
    Pisarenko GS, Krasowsky AY, Vainshtock VA, Kramerenko IV, Krasiko VN (1987) Eng Fract Mech 28:539CrossRefGoogle Scholar
  16. 16.
    Meyers MA, Subhash G, Kad BK, Prasad L (1994) Mech Mater Sci Technol 17:175CrossRefGoogle Scholar
  17. 17.
    Steinberg DJ, Lund CM (1989) J Appl Phys 65(4):1528CrossRefGoogle Scholar
  18. 18.
    Hoge KG, Mukherjee AK (1977) J Mater Sci 12:1666. doi: CrossRefGoogle Scholar
  19. 19.
    Zerilli FJ, Armstrong RW (1987) J Appl Phys 61(5):1896CrossRefGoogle Scholar
  20. 20.
    Zerilli FJ, Armstrong RW (1990) J Appl Phys 68(4):580CrossRefGoogle Scholar
  21. 21.
    Zerilli FJ, Armstrong RW (1992) Acta Metall Mater 40:1803CrossRefGoogle Scholar
  22. 22.
    Follansbee PS (1986) In: Murr LE, Staudhammer K, Meyers MA (eds) Metallurgical applications of shock-wave and high-strain-rate phenomena. Marcel Dekker, p 451Google Scholar
  23. 23.
    Follansbee PS, Gray GT III (1991) Int J Plast 7:651CrossRefGoogle Scholar
  24. 24.
    Follansbee PS, Kocks UF (1988) Acta Metall Mater 36(1):81CrossRefGoogle Scholar
  25. 25.
    Regazzoni G, Kocks UF, Follansbee PS (1987) Acta Metall Mater 35(12):2865CrossRefGoogle Scholar
  26. 26.
    Preston DL, Tonks DL, Wallace DC (2003) J Appl Phys 93:211CrossRefGoogle Scholar
  27. 27.
    Rosenfield AR, Votava E, Hahn GT (1968) In: Ductility. American Society of Metals, Metals Park, OH, p 63Google Scholar
  28. 28.
    Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Asay JR, Hall CA, Konrad CH, Trott WM, Chandler GA, Fleming KJ, Holland KG, Chhabildas LC, Mehlhorn TA, Vesey R, Trucano TG, Hauer A, Cauble R, Foord M (1999) Int J Impact Eng 23:27CrossRefGoogle Scholar
  30. 30.
    Armstrong RW, Arnold W, Zerilli FJ (2007) Metall Mater Trans A 38A(11):2605CrossRefGoogle Scholar
  31. 31.
    Esquivel EV, Murr LE (2006) Mater Sci Technol 22(4):438CrossRefGoogle Scholar
  32. 32.
    Schneider MS, Kad B, Kalantar DH, Remington BA, Kenik E, Jarmakani H, Meyers MA (2005) Int J Impact Eng 32:473CrossRefGoogle Scholar
  33. 33.
    Bacon DJ, Vitek V (2002) Metall Mater Trans A 33(3):721CrossRefGoogle Scholar
  34. 34.
    Feng C, Murr LE, Niou CS (1996) Metall Mater Trans A 27(7):1773CrossRefGoogle Scholar
  35. 35.
    Hines JA, Vecchio KS (1997) Acta Mater 45:635CrossRefGoogle Scholar
  36. 36.
    Arnold W, Held M, Stilp AJ (1990) In: Schmidt SC, Johnson JN, Davidson LW (eds) Shock compression of condensed matter—1989. Elsevier, Amsterdam, p 421Google Scholar
  37. 37.
    Johnson JN (1981) J Appl Phys 52:2812CrossRefGoogle Scholar
  38. 38.
    Johnson JN (1982) In: Nellis WJ, Seaman L, Graham RA (eds) Shock waves in condensed matter—1981. American Institute of Physics, New York, p 438Google Scholar
  39. 39.
    Davison LW, Graham RA (1979) Phys Rep 55:255CrossRefGoogle Scholar
  40. 40.
    Rose MF, Berger TL, Inman MC (1967) Trans Metall Soc AIME 239:1998Google Scholar
  41. 41.
    Kressel H, Brown N (1967) J Appl Phys 38:1618CrossRefGoogle Scholar
  42. 42.
    Grace FI (1969) J Appl Phys 40:2649CrossRefGoogle Scholar
  43. 43.
    Murr LE, Kuhlmann-Wilsdorf D (1978) Acta Metall 26:847CrossRefGoogle Scholar
  44. 44.
    Wright RN, Mikkola DE (1982) Mater Sci Eng 53:273CrossRefGoogle Scholar
  45. 45.
    Greulich F, Murr LE (1979) Mater Sci Eng 39:81CrossRefGoogle Scholar
  46. 46.
    Gray GT III (1992) In: Meyers MA, Murr LE, Standhammer KP (eds) Shock-wave and high strain rate phenomena in materials. Marcel Deker, New York, p 899Google Scholar
  47. 47.
    Meyers MA, Kestenbach HJ, Soares CAO (1980) Mater Sci Eng 45:143CrossRefGoogle Scholar
  48. 48.
    Murr LE, Huang J-Y (1975) Mater Sci Eng 19:115CrossRefGoogle Scholar
  49. 49.
    Walsh JM, Rice MH, McQueen RG, Yarger FL (1957) Phys Rev 108:196CrossRefGoogle Scholar
  50. 50.
    Rohde RW, Towne TL (1971) J Appl Phys 42:878CrossRefGoogle Scholar
  51. 51.
    Furnish MD, Chhabildas LC, Steinberg DJ (1994) Dynamical behaviour of tantalum. American Institute of Physics, New York, p 1099Google Scholar
  52. 52.
    Mitchell AC, Nellis WJ (1981) J Appl Phys 52:3363CrossRefGoogle Scholar
  53. 53.
    Furnish MD, Lassila DH, Chhabildas LC, Steinberg DJ (1996) In: Schmidt SC, Tao WC (eds) Shock compression of condensed matter—1995. AIP Press, Woodbury, NY, p 527Google Scholar
  54. 54.
    Fiske PS, Holmes N, Lassila D (1999) In: Khan AS (ed) Plasticity 99: constitutive and damage modelling of inelastic deformation and phase transformation, Neat Press, Fulton, MD, p 639Google Scholar
  55. 55.
    Gray GT III, Vecchio KS (1995) Metall Mater Trans A 26A:2555CrossRefGoogle Scholar
  56. 56.
    Gray GT III (1990) In: Schmidt SC, Johnson JN, Davison LW (eds) Shock compression of condensed matter—1989. North-Holland, Amsterdam, p 407Google Scholar
  57. 57.
    Murr LE, Meyers MA, Niou C-S, Chen YJ, Pappu S, Kennedy C (1997) Acta Mater 45:157CrossRefGoogle Scholar
  58. 58.
    Hsiung LM, Lassila DH (1998) Scr Mater 38:1371CrossRefGoogle Scholar
  59. 59.
    Kear BH, Wilsdorf HGF (1962) Trans Metall Soc AIME 224:382Google Scholar
  60. 60.
    Sizek HW, Gray GT (1993) Acta Metall Mater 41:1855CrossRefGoogle Scholar
  61. 61.
    Gray GT III (1993) In: Schmidt SC, Samara GA, Ross M (eds) High pressure science and technology. AIP Press, Colorado Springs, CO, p 1161Google Scholar
  62. 62.
    Albert DE, Gray GT (1994) Philos Mag A 70:145CrossRefGoogle Scholar
  63. 63.
    Kasantseva NV, Greenberg BA, Popov AA, Shorokhov EV (2003) J Phys IV 110:923Google Scholar
  64. 64.
    Geng HY, Chen NX, Sluiter MHF (2005) Phys Rev B 71:012105CrossRefGoogle Scholar
  65. 65.
    Kim Y-W (1991) Mater Res Symp Proc 213:777CrossRefGoogle Scholar
  66. 66.
    Maloy SA, Gray GT (1996) Acta Mater 44:1741CrossRefGoogle Scholar
  67. 67.
    Gardiner P, Miguelez H, Cortes R, LePetitcorps Y, Dodd B, Navarro C (1997) J Phys IV Colloq C3:593Google Scholar
  68. 68.
    Gray GT III (1994) J Phys IV Colloq C8:373Google Scholar
  69. 69.
    Jones IP, Hutchinson WB (1981) Acta Metall 29:951CrossRefGoogle Scholar
  70. 70.
    Peters JO, Ritchie RO (2000) Eng Fract Mech 67:193CrossRefGoogle Scholar
  71. 71.
    Thompson SR, Ruschau JJ, Nicholas T (2001) Int J Fatigue 23:5405CrossRefGoogle Scholar
  72. 72.
    Ruschau JJ, Nicholas T, Thompson SR (2001) Int J Impact Eng 25:233CrossRefGoogle Scholar
  73. 73.
    Kad BK, Schoenfeld SE, Burkins MS (2002) Metall Mater Trans A 33A:937CrossRefGoogle Scholar
  74. 74.
    Kad BK, Schoenfeld SE, Burkins MS (2002) Mater Sci Eng A322:241CrossRefGoogle Scholar
  75. 75.
    Schoenfeld SE, Kad BK (2002) Int J Plast 18:461CrossRefGoogle Scholar
  76. 76.
    Gray GT III, Morris CE (1988) In: Sixth world conference on titanium, France, p 269Google Scholar
  77. 77.
    Rosenberg Z, Mebar Y, Yaziv D (1981) J Phys D Appl Phys 14:261CrossRefGoogle Scholar
  78. 78.
    Dandekar DP, Spletzer SV (2000) In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter 1999. American Institute of Physics, Melville, NY, p 427Google Scholar
  79. 79.
    Razorenov SV, Kanel GI, Utkin AV, Bogach AA, Burkins M, Gooch WA (2000) In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter—1999. AIP Press, Melville, NY, p 415Google Scholar
  80. 80.
    Church PD, Andrews T, Bourne NK, Millett JCF (2001) In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter 2001. American Institute of Physics, Melville, NY, p 511Google Scholar
  81. 81.
    Tyler C, Millett JCF, Bourne NK (2006) In: Furnish MD (ed) Shock compression of condensed matter—2005. AIP Press, Melville, NY, p 674Google Scholar
  82. 82.
    Greeff CW, Trinkle DR, Albers RC (2001) J Appl Phys 90:2221CrossRefGoogle Scholar
  83. 83.
    Millett JCF, Whiteman G, Bourne NK (2008) J Appl Phys 104(7):073531CrossRefGoogle Scholar
  84. 84.
    Millett JCF, Meziere YJE, Bourne NK (2007) J Mater Sci 42:5941. doi: CrossRefGoogle Scholar
  85. 85.
    Gray GT III, Bourne NK, Millett JCF (2003) J Appl Phys 94:6430CrossRefGoogle Scholar
  86. 86.
    Millett JCF, Meziere YJE, Gray GT, Cerreta EK, Bourne NK (2006) J Appl Phys 100:063506CrossRefGoogle Scholar
  87. 87.
    Millett JCF, Bourne NK, Gray GT III, Jones IP (2002) Acta Mater 50:4801CrossRefGoogle Scholar
  88. 88.
    Kalantar DH, Belak JF, Collins GW, Colvin JD, Davies HM, Eggert JH, Germann TC, Hawreliak J, Holian BL, Kadau K, Lomdahl PS, Lorenzana HE, Meyers MA, Rosolankova K, Schneider MS, Sheppard J, Stolken JS, Wark JS (2005) Phys Rev Lett 95(7):075502CrossRefGoogle Scholar
  89. 89.
    Bridgman PW (1931) The physics of high pressure. Bell, LondonGoogle Scholar
  90. 90.
    McMillan PF (2005) Nat Mater 4(10):715CrossRefGoogle Scholar
  91. 91.
    Rosenberg Z, Bourne NK, Millett JCF (2007) Meas Sci Technol 18:1843CrossRefGoogle Scholar
  92. 92.
    Barker LM, Hollenbach RE (1972) J Appl Phys 43:4669CrossRefGoogle Scholar
  93. 93.
    Bourne NK (1999) In: Cameron IG (ed) New models and numerical codes for shock wave processes in condensed media. AWE Hunting Brae, Aldermaston, Berkshire, UK, p 237Google Scholar
  94. 94.
    Dandekar DP, Weisgerber WJ (1999) Int J Plast 15:1291CrossRefGoogle Scholar
  95. 95.
    Clifton RJ, Klopp RW (1985) In: Metals handbook. American Society of Metals, Metals Park, OH, p 230Google Scholar
  96. 96.
    Asay JR, Chhabildas LC, Dandekar DP (1977) Bull Am Phys Soc 24:712Google Scholar
  97. 97.
    Lipkin J, Asay JR (1977) J Appl Phys 48:182CrossRefGoogle Scholar
  98. 98.
    Chhabildas LC, Wise JL, Asay JR (1981) Bull Am Phys Soc 26:666Google Scholar
  99. 99.
    Huang H, Asay JR (2006) J Appl Phys 100:043514CrossRefGoogle Scholar
  100. 100.
    Brar NS, Bless SJ (1992) High Press Res 10:773CrossRefGoogle Scholar
  101. 101.
    Rosenberg Z, Partom Y, Yaziv D (1981) J Appl Phys 52:755CrossRefGoogle Scholar
  102. 102.
    Chartagnac PF (1982) J Appl Phys 53:948CrossRefGoogle Scholar
  103. 103.
    Gupta SC, Gupta YM (1985) J Appl Phys 57:2464CrossRefGoogle Scholar
  104. 104.
    Millett JCF, Bourne NK, Rosenberg Z (1996) J Phys D 29:2466CrossRefGoogle Scholar
  105. 105.
    Rosenberg Z, Partom YJ (1985) J Appl Phys 58:3072CrossRefGoogle Scholar
  106. 106.
    Rosenberg Z, Yaziv D, Partom Y (1980) J Appl Phys 51:3702CrossRefGoogle Scholar
  107. 107.
    Bourne NK, Gray GT III (2005) Proc R Soc Lond A 460:3297–3312CrossRefGoogle Scholar
  108. 108.
    Bourne NK, Gray GT III (2005) Soft-recovery of shocked polymers and composites. J Phys D Appl Phys 38(19):3690–3694CrossRefGoogle Scholar
  109. 109.
    Bourne NK, Green WH, Dandekar DP (2006) On the one-dimensional recovery and microstructural evaluation of shocked alumina. Proc R Soc Lond A 462(2074):3197–3212CrossRefGoogle Scholar
  110. 110.
    Dieter GE (1961) In: Shewmon PG, Zackay VF (eds) Response of metals to high velocity deformation. Interscience, New York, p 409Google Scholar
  111. 111.
    Llorca F, Buy F, Farre J (2002) In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter—2001. American Institute of Physics, Melville, NY, p 638Google Scholar
  112. 112.
    Mahajan S (1970) Phys Status Solidi A 2:187CrossRefGoogle Scholar
  113. 113.
    Meyers MA (1994) Dynamic behavior of materials. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  114. 114.
    Mogilevskii MA (1985) Combust Explos Shock Waves 21:639CrossRefGoogle Scholar
  115. 115.
    Mogilevsky MA, Newman PE (1983) Phys Rep 97:357CrossRefGoogle Scholar
  116. 116.
    Murr LE (1981) In: Meyers MA, Murr LE (eds) Shock waves and high strain rate phenomena in metals. Plenum, New York, p 753Google Scholar
  117. 117.
    Murr LE, Meyers MA (1983) In: Blazynski TZ (ed) Explosive welding, forming and compaction. Applied Science Publishers, London, p 83Google Scholar
  118. 118.
    Smith CS (1958) Trans Metall Soc AIME 214:574Google Scholar
  119. 119.
    Zukas EG (1966) Metals Eng Q 6(2):1Google Scholar
  120. 120.
    Clifton RJ, Raiser G, Ortiz M, Espinosa H (1990) In: Schmidt SC, Johnson JN, Davidson LW (eds) Shock compression of condensed matter—1989. Elsevier, Amsterdam, p 437Google Scholar
  121. 121.
    Hagelberg CR, Swift RP, Carney TC, Greening D, Hiltl M, Nellis WJ (2000) In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter—1999. American Institute of Physics, Melville, NY, p 1275Google Scholar
  122. 122.
    Nellis WJ, Gratz AJ (1993) Int J Impact Eng 14:531CrossRefGoogle Scholar
  123. 123.
    Norwood FR, Graham RA, Sawaoka A (1986) In: Gupta YM (ed) Shock waves in condensed matter—1985. Plenum, New York, p 837Google Scholar
  124. 124.
    Rabie RL, Vorthman JE, Dienes JK (1984) In: Asay JR, Graham RA, Straub GK (eds) Shock waves in condensed matter—1983. North-Holland, Amsterdam, p 199Google Scholar
  125. 125.
    Tanaka K, Fujiwara S, Kusakabe M (1984) In: Asay JR, Graham RA, Straub GK (eds) Shock waves in condensed matter—1983. North-Holland, Amsterdam, p 203Google Scholar
  126. 126.
    Gray GT III (1993) In: Asay JR, Shahinpoor M (eds) High-pressure shock compression of solids. Springer-Verlag, New York, p 187Google Scholar
  127. 127.
    Gray GT III (2000) In: Kuhn H, Medlin D (eds) ASM handbook. Vol 8: mechanical testing and evaluation. ASM International, Materials Park, OH, p 530Google Scholar
  128. 128.
    Gray GT III, Follansbee PS, Frantz CE (1989) Mater Sci Eng A 111:9CrossRefGoogle Scholar
  129. 129.
    Jones OE (1972) In: Davison L, Kennedy JE (eds) Behavior and utilization of explosives in engineering design. University of New Mexico, Albuquerque, NM, p 125Google Scholar
  130. 130.
    Stevens AL, Jones OE (1972) Trans ASME J Appl Mech 39:359CrossRefGoogle Scholar
  131. 131.
    Marsh SP (1980) LASL shock hugoniot data. University of California Press, Los AngelesGoogle Scholar
  132. 132.
    Duvall GE, Graham RA (1977) Rev Mod Phys 49:523CrossRefGoogle Scholar
  133. 133.
    Hsiung L (2000) Acta Mater 48(20):4865CrossRefGoogle Scholar
  134. 134.
    Duffy TS (2007) In: Furnish MD et al (eds) Shock compression of condensed matter 2007. American Institute of Physics, Melville, NY, p 639Google Scholar
  135. 135.
    Zaretsky EB, Kanel GI, Razorenov SV, Baumung K (2005) Int J Impact Eng 31:41CrossRefGoogle Scholar
  136. 136.
    Kanel GI, Razorenov SV, Baumung K, Singer J (2001) J Appl Phys 90:136CrossRefGoogle Scholar
  137. 137.
    Millett JCF, Bourne NK, Rosenberg Z, Field JE (1999) J Appl Phys 86(12):6707CrossRefGoogle Scholar
  138. 138.
    Millett JCF, Gray GT III, Bourne NK (2007) J Appl Phys 101:033520CrossRefGoogle Scholar
  139. 139.
    Kear BH, Giamei AF, Oblak JM (1970) Scr Metall 4:567CrossRefGoogle Scholar
  140. 140.
    Ming C, Millett JCF, Bourne NK, Jones IP (2008) J Appl Phys (in press)Google Scholar
  141. 141.
    Shehadeh MA, Bringa EM, Zbib HM, McNaney JM, Remington BA (2006) Appl Phys Lett 89(17):171918CrossRefGoogle Scholar
  142. 142.
    Taylor JW, Rice MH (1963) J Appl Phys 34:364CrossRefGoogle Scholar
  143. 143.
    Taioli S, Cazorla C, Gillan MJ, Alfe D (2007) Phys Rev B 75(21):214103CrossRefGoogle Scholar
  144. 144.
    Cazorla C, Alfe D, Gillan MJ (2008) Phys Rev B 77(22):224103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • N. K. Bourne
    • 1
    Email author
  • J. C. F. Millett
    • 1
  • G. T. GrayIII
    • 2
  1. 1.AWEAldermaston, ReadingUK
  2. 2.MST-8, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations