Journal of Materials Science

, Volume 44, Issue 9, pp 2430–2433 | Cite as

Electrical conduction of graphite filled high density polyethylene composites; experiment and theory

  • S. Bhattacharya
  • R. P. Tandon
  • V. K. SachdevEmail author


Disordered conductor–insulator composites exhibit a variety of phenomena, some of which have important commercial applications. Among large number of composite materials, conductive polymer composites have been extensively used in resistors, self regulating heaters, over current and over temperature circuit protection devices, antistatic materials, and materials for electromagnetic interference shielding. In order to analyze the conducting behavior in such systems on microscopic scale, several models have been proposed, such as percolation theory [1], effective media theory as projected by Bruggeman [2], aggregate structure model which overcome the disadvantage of effective media theory [3], and McLachlan’s general effective medial (GEM) theory which combines most of the features of both percolation and effective media theory [4]. GEM equation is an interpolation between Bruggeman’s symmetric and asymmetric theories. The format of equation is in the same mathematical form...


Carbon Black Percolation Threshold HDPE UHMWPE Ultra High Molecular Weight Polyethylene 



This research is financially supported under UGC project F. No. 32-41/2006 (SR), Government of India. The authors would like to thank Prof. D. Pental (Vice Chancellor) for permission to implement this project in Department of Physics, University of Delhi North Campus. Graphite India Ltd, Bangalore is gratefully acknowledged for providing graphite powder.


  1. 1.
    Chen XB, Devaux J, Issi JP, Billaud D (1995) Polym Eng Sci 35:637CrossRefGoogle Scholar
  2. 2.
    Brouers F (1986) J Phys C 19:7183CrossRefGoogle Scholar
  3. 3.
    Liang J, Yang Q (2007) J Appl Phys 102:083508CrossRefGoogle Scholar
  4. 4.
    McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187CrossRefGoogle Scholar
  5. 5.
    Lei H, Pitt WG, McGrath LK, Ho CK (2007) Sens Actuators B 125:396CrossRefGoogle Scholar
  6. 6.
    Sachdev VK, Mehra NC, Mehra RM (2004) Phys Stat Sol (a) 201:2089CrossRefGoogle Scholar
  7. 7.
    Sachdev VK, Srivastava NK, Panwar V, Singh H, Mehra NC, Mehra RM (2006) Phys Stat Sol (a) 203:3754CrossRefGoogle Scholar
  8. 8.
    Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) J Mater Sci 42:3408. doi: CrossRefGoogle Scholar
  9. 9.
    Heaney MB (1995) Phys Rev B 52:12477CrossRefGoogle Scholar
  10. 10.
    Srivastav NK, Sachdev VK, Mehra RM (2007) J Appl Polym Sci 104:2027CrossRefGoogle Scholar
  11. 11.
    Hsu WY, Holtje WG, Barkley JR (1988) J Mater Sci Lett 7:459CrossRefGoogle Scholar
  12. 12.
    Lisunova MO, Mamunya Ye P, Lebovka NI, Melezhyk AV (2007) Eur Polym 43:949CrossRefGoogle Scholar
  13. 13.
    Ma RZ, Xu CL, Wei BQ, Liang J, Wu DH, Li DJ (1999) Mater Res Bull 34:741CrossRefGoogle Scholar
  14. 14.
    Qiang Z, Lie S, Wenchun L, Yihu S, Xiaosu Y (2005) Chin Sci Bull 50:385CrossRefGoogle Scholar
  15. 15.
    Mclachlan DS (2000) J Electroceramics 5:93CrossRefGoogle Scholar
  16. 16.
    Yi XS, Wu G, Pan Y (1997) Polym Int 44:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Bhattacharya
    • 1
  • R. P. Tandon
    • 1
  • V. K. Sachdev
    • 1
    Email author
  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations