Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3015–3019 | Cite as

Preparation and tunable photoluminescence of alloyed CdSxSe1−x nanorods

  • Chao Yang
  • Xiaochong Zhou
  • Longyan Wang
  • Xike TianEmail author
  • Yanxin Wang
  • Zhenbang Pi
Article

Abstract

Ternary alloys of CdSxSe1−x nanorods have been synthesized by the thermal treatment of Cd2+ dispersed polyethylene glycol 2000 gel (PEG2000) with ethylenediamine solution of sulfur and selenium in a sealed system at 180 °C for 24 h, during which the proportion between S and Se in the nanorods was controlled by the ratios of every starting material to each other. The alloyed ternary CdSxSe1−x nanorods are highly crystalline without any other phase. The optical property these nanorods could be manipulated by modulating the composition of S and Se.

Keywords

Select Area Electron Diffraction Pattern Sulfur Source Near Band Edge CdSe Nanorods Sulfur Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gudiksen MS, Lieber CM (2000) J Am Chem Soc 122:8801CrossRefGoogle Scholar
  2. 2.
    Gudiksen MS, Wang J, Lieber CM (2002) J Phys Chem B 106:4036CrossRefGoogle Scholar
  3. 3.
    Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Science 299:1874CrossRefGoogle Scholar
  4. 4.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897CrossRefGoogle Scholar
  5. 5.
    Choi HJ, Johnson JC, He R, Lee SK, Kim F, Pauzauskie P, Goldberger J, Saykally RJ, Yang P (2003) J Phys Chem B 107:8721CrossRefGoogle Scholar
  6. 6.
    Duan X, Huang Y, Agarwal R, Lieber CM (2003) Nature 421:241CrossRefGoogle Scholar
  7. 7.
    Zhong X, Feng Y, Knoll W, Han M (2003) J Am Chem Soc 125:13559CrossRefGoogle Scholar
  8. 8.
    Bailey RE, Nie S (2003) J Am Chem Soc 125:7100CrossRefGoogle Scholar
  9. 9.
    Petrov DV, Santos BS, Pereira GAL, Donega CDM (2002) J Phys Chem B 106:5325CrossRefGoogle Scholar
  10. 10.
    Kulkarni SK, Winkler U, Deshmukh N, Borse PH, Fink R, Umbach E (2001) Appl Surf Sci 169:438CrossRefGoogle Scholar
  11. 11.
    Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T (1999) Thin Solid Films 349:220CrossRefGoogle Scholar
  12. 12.
    Meit G (1992) J Phys Condens Matter 4:7521CrossRefGoogle Scholar
  13. 13.
    Jang E, Jun S, Pu L (2003) Chem Commun 24:2964CrossRefGoogle Scholar
  14. 14.
    Ionov L, Sapra S, Synytska A, Rogach AL, Stamm M, Diez S (2006) Adv Mater 18:1453CrossRefGoogle Scholar
  15. 15.
    David C, Michael C (2006) Infrared Phys Techn 48:227CrossRefGoogle Scholar
  16. 16.
    Vegard L, Zeit F (1921) Physik 5:17CrossRefGoogle Scholar
  17. 17.
    Qu LH, Peng XG (2002) J Am Chem Soc 124:2049CrossRefGoogle Scholar
  18. 18.
    Zhang JH, Yang XG, Li SD, Wang DW, Xie Y, Qian YT (2000) J Cryst Growth 220:231CrossRefGoogle Scholar
  19. 19.
    Zhang JH, Yang XG, Wang DW (2000) Adv mater 12:1348CrossRefGoogle Scholar
  20. 20.
    Shelrick WS, Wachhold M (1997) Angew Chem Int Ed Engl 36:206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chao Yang
    • 1
    • 2
  • Xiaochong Zhou
    • 1
  • Longyan Wang
    • 1
  • Xike Tian
    • 1
    Email author
  • Yanxin Wang
    • 2
  • Zhenbang Pi
    • 1
  1. 1.Faculty of Material Science and Chemistry EngineeringChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.School of Environmental StudiesChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations