Journal of Materials Science

, Volume 44, Issue 6, pp 1652–1655 | Cite as

Biofilm inhibitory coatings formulated from glass polyalkenoate cement chemistry: an evaluation of their adhesive nature

  • A. Coughlan
  • D. Boyd
  • M. R. TowlerEmail author

Glass polyalkenoate cements (GPCs), are formed by the reaction between an ion-leachable glass and an aqueous solution of polyacrylic acid (PAA) [1]. GPCs may also be formed from a combination of polyalkenoaic acids and various fillers such as those based on the use of additional fillers like N,N′-methylenebisacrylamide to increase their strength and toughness [2]. These materials can be formulated to be anticariostatic [3] by the inclusion of fluoride in the glass phase of GPCs which subsequently releases beneficial amounts of the F ion into the oral environment [4, 5]. Commercially available GPCs are all based on calcium alumino silicate glass chemistry [6]. Aluminium is present in the glass because it can isomorphically replace the SiO4 tetrahedra within the glass structure. This causes a local charge imbalance within the structure, resulting in the acid degradability of the glass [7]. More importantly, aluminium is essential for the mechanical integrity of the cement as the ions...


Bond Strength Polyacrylic Acid Peel Test Tooth Structure Zinc Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Crisp S, Wilson AD (1974) J Dent Res 53:1420CrossRefGoogle Scholar
  2. 2.
    Acosta DA, Funkhouser GP, Grady BP (2007) J Mater Sci 42:3632. doi: CrossRefGoogle Scholar
  3. 3.
    Boyd D, Li H, Tanner DA, Towler MR, Wall JG (2006) J Mater Sci Mater Med 17:489CrossRefGoogle Scholar
  4. 4.
    Forss H (1993) J Dent Res 72:1257CrossRefGoogle Scholar
  5. 5.
    Mitra SB (1991) Abstr Pap Am Chem Soc 202:262Google Scholar
  6. 6.
    Nicholson JW (1998) Biomaterials 19:485CrossRefGoogle Scholar
  7. 7.
    Griffin SG, Hill RG (1999) Biomaterials 20:1579CrossRefGoogle Scholar
  8. 8.
    Wilson AD, Nicholson JW (1993) Acid-base cements. Their biomedical and industrial applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Blades MC, Moore DP, Revell PA, Hill R (1998) J Mater Sci Mater Med 9:701CrossRefGoogle Scholar
  10. 10.
    Exley C (1999) J Inorg Biochem 76:133CrossRefGoogle Scholar
  11. 11.
    Zatta P, Kiss T, Suwalsky M, Berthon G (2002) Coord Chem Rev 228:271CrossRefGoogle Scholar
  12. 12.
    Boyd D, Towler MR (2005) J Mater Sci Mater Med 16:843CrossRefGoogle Scholar
  13. 13.
    Boyd D, Towler MR, Law RV, Hill RG (2006) J Mater Sci Mater Med 17:397CrossRefGoogle Scholar
  14. 14.
    Boyd D, Towler MR, Wren AW, Clarkin OM, Tanner DA (2008) J Mater Sci 43:1170. doi: CrossRefGoogle Scholar
  15. 15.
    Quarles LD, Murphy G, Vogler JB, Drezner MK (1990) J Bone Miner Res 5:625CrossRefGoogle Scholar
  16. 16.
    Sampath LA, Chowdhury N, Caraos L, Modak SM (1995) J Hosp Infect 30:201CrossRefGoogle Scholar
  17. 17.
    Cook G, Costerton JW, Darouiche RO (2000) Int J Antimicrob Agents 13:169CrossRefGoogle Scholar
  18. 18.
    Coughlan A, Boyd D, Douglas CWI, Towler MR (2008) J Mater Sci Mater Med 19(12):3555–3560CrossRefGoogle Scholar
  19. 19.
    White LW (1986) J Clin Orthod 20:387Google Scholar
  20. 20.
    Hibino Y, Kuramochi K-I, Hoshino T, Moriyama A, Watanabe Y, Nakajima H (2002) Dent Mater 18:552CrossRefGoogle Scholar
  21. 21.
    Rushe N, Towler MR (2006) J Mater Sci 41:1251. doi: CrossRefGoogle Scholar
  22. 22.
    Borden AJVD, Werf HVD, Mei HCVD, Busscher HJ (2004) Appl Environ Microbiol 70:6871CrossRefGoogle Scholar
  23. 23.
    Falkinham JO (2007) J Med Microbiol 56:250CrossRefGoogle Scholar
  24. 24.
    ISO:8510-1:1990 (1990) Adhesives-peel test for a flexible-bonded-to-rigid test specimen assembly. Part 1: 90° peelGoogle Scholar
  25. 25.
    ISO:8510-2:1990 (1990) Adhesives-peel test for a flexible-bonded-to-rigid test specimen assembly. Part 2: 180° peelGoogle Scholar
  26. 26.
    Dahlquist CA (1969) Treatise on adhesion and adhesives. Marcel Dekker, New YorkGoogle Scholar
  27. 27.
    Williams JA, Kauzlarich JJ (2006) Tribol Int 38:951CrossRefGoogle Scholar
  28. 28.
    ISO:11405 (1994) Case postal 56. International Standards Organisation, SwitzerlandGoogle Scholar
  29. 29.
    Farah CS, Orton VG, Collard SM (1998) Aust Dent J 43:81CrossRefGoogle Scholar
  30. 30.
    Setien VJ, Armstrong SR, Wefel JS (2005) Dent Mater 21:498CrossRefGoogle Scholar
  31. 31.
    Burrow MF, Nopnakeepong U, Phrukkanon S (2002) Dent Mater 18:239CrossRefGoogle Scholar
  32. 32.
    Gibba AJ, Katonab TR (2006) Am J Orthod Dentofacial Orthop 130:699e.1Google Scholar
  33. 33.
    Summers A, Kao E, Gilmore J, Gunel E, Ngan P (2004) Am J Orthod Dentofacial Orthop 126:200CrossRefGoogle Scholar
  34. 34.
    Rix D, Foley TF, Mamandras A (2000) Am J Orthod Dentofacial Orthop 119:36CrossRefGoogle Scholar
  35. 35.
    Kula KS, Nash TD, Purk JH (2003) Orthod Craniofac Res 6:96CrossRefGoogle Scholar
  36. 36.
    Paschos E, Okuka S, Ilie N, Huth KC, Hickel R, Rudzki-Janson I (2006) J Orofac Orthop 67:196CrossRefGoogle Scholar
  37. 37.
    Al-Jazairya YH (2001) J Prosthet Dent 85:396CrossRefGoogle Scholar
  38. 38.
    Hotz P, Mclean JW, Sced I, Wilson AD (1977) Br Dent J 142:41CrossRefGoogle Scholar
  39. 39.
    Powis DR, Folleras T, Merson SA, Wilson AD (1982) J Dent Res 61:1416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Clinical Materials Unit, Materials and Surface Science InstituteUniversity of LimerickLimerickIreland
  2. 2.Medical Engineering Design and Innovation CentreCork Institute of TechnologyCorkIreland
  3. 3.Department of Crystalline Materials ScienceGraduate School of Engineering, Nagoya UniversityNagoyaJapan

Personalised recommendations