Journal of Materials Science

, Volume 44, Issue 9, pp 2408–2418 | Cite as

Forming contacts and grain boundaries between MgO nanoparticles

  • Julia Deneen Nowak
  • C. Barry CarterEmail author


The present article is concerned with how nanoparticles join: it considers MgO nano-cubes as a model, well-defined system. The development of grain boundaries (GBs) between cube particles has been re-examined using MgO smoke. In addition to the face-to-face contact which leads to the well-known low-∑ twist GBs, interactions are also found which initially involve point-to-face contact, edge-to-face contact, or contacts along the cube edges. It is proposed here that the point contact lead to a line contact through the requirement to balance charges, and rotation about such a line of contact leads to formation of the interface, i.e., the grain boundary. The atoms along the edges have lower coordination than the atoms in the bulk, which may contribute to the edge–edge and edge-face boundary formation. The inherently small size of nanoparticles makes transmission electron microscopy (TEM) an invaluable technique for characterizing the contacts between them without modifying them in any way. The present study uses TEM to characterize the types of boundaries formed, discusses the boundary structures, and considers how the particle morphology may determine the formation of low-∑ GBs.


Smoke Line Contact Burger Vector Twist Boundary Smoke Particle 



This research has been supported by the IGERT program of the NSF under award number DGE-0114372 and by NSF grant number CMS0322436. The authors acknowledge support from the 3M Heltzer Endowed Chair and the University of Connecticut. They would also like to thank Nicole Munoz for help with collecting the MgO smoke, Jonathan Winterstein and Dr. Ramachandran Divakar for helpful discussions, and Jessica Riesterer and Joysurya Basy for critically reading the manuscript.


  1. 1.
    Yoshimura M, Byrappa K (2008) J Mater Sci 43:2085. doi: CrossRefGoogle Scholar
  2. 2.
    Ionita P, Spafiu F, Ghica C (2008) J Mater Sci 43:6571. doi: CrossRefGoogle Scholar
  3. 3.
    Chen X, Hutchison JL, Dobson PJ, Wakefield G (2009) J Mater Sci 44:285. doi: CrossRefGoogle Scholar
  4. 4.
    Gautam ARS, Howe JM (2009) J Mater Sci CrossRefGoogle Scholar
  5. 5.
    Carter CB, Norton MG (2007) Ceramic materials: science & engineering. Springer, New YorkGoogle Scholar
  6. 6.
    Johnson MT, Michael JR, Gilliss SR, Carter CB (1999) Philos Mag A 79:2877CrossRefGoogle Scholar
  7. 7.
    Nakamura Y, Kudo S, Mukaida M, Ohshima S (2003) Phys C 392–396 II:1276CrossRefGoogle Scholar
  8. 8.
    Lin C, Xu YH, Naramoto H, Wei P, Kitazawa S, Narumi K (2002) J Phys D Appl Phys 35:1864CrossRefGoogle Scholar
  9. 9.
    Norton MG, Hellman ES, Hartford EH Jr, Carter CB (1991) J Cryst Growth 113:716CrossRefGoogle Scholar
  10. 10.
    Zhu TJ, Lu L, Zhao XB (2006) Mater Sci Eng B 129:96CrossRefGoogle Scholar
  11. 11.
    Ha CH, Kim JS, Jeong DC, Whang KW (2004) J Appl Phys 96:4807CrossRefGoogle Scholar
  12. 12.
    Yoshida K, Uchiike H, Sawa M (1999) IEICE Trans Electron E82-C:1798Google Scholar
  13. 13.
    Urade T, Iemori T, Osawa M, Nakayama N, Morita I (1976) IEEE Trans Electron Dev 23:313CrossRefGoogle Scholar
  14. 14.
    Uchiike H, Miura K, Nakayama N, Shinoda T, Fukushima Y (1976) IEEE Trans Electron Dev 23:1211CrossRefGoogle Scholar
  15. 15.
    Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) J Phys Chem B 103:3225CrossRefGoogle Scholar
  16. 16.
    Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Chem Eur J 8:2602CrossRefGoogle Scholar
  17. 17.
    Mishakov IV, Zaikovskii VI, Heroux DS, Bedilo AF, Chesnokov VV, Volodin AM, Martyanov IN, Filimonova SV, Parmon VN, Klabunde KJ (2005) J Phys Chem 109:6982CrossRefGoogle Scholar
  18. 18.
    Leofanti G, Solari M, Tauszik GR, Garbassi F, Galvagno S, Schwank J (1982) Appl Catal 3:131CrossRefGoogle Scholar
  19. 19.
    Hattori H (2001) Appl Catal A 222:247CrossRefGoogle Scholar
  20. 20.
    Richards R, Mulukutla RS, Mishakov I, Chesnokov V, Volodin A, Zaikovski V, Sun N, Klabunde KJ (2001) Scr Mater 44:1663CrossRefGoogle Scholar
  21. 21.
    Ma R, Bando Y (2003) Chem Phys Lett 370:770CrossRefGoogle Scholar
  22. 22.
    Yang Q, Sha J, Wang L, Wang J, Yang D (2006) Mater Sci Eng C 26:1097CrossRefGoogle Scholar
  23. 23.
    Zhao M, Chen XL, Zhang XN, Dai L, Jian JK, Xu YP (2004) Appl Phys A 79:429CrossRefGoogle Scholar
  24. 24.
    Yang PD, Lieber CM (1996) Science 273:1836CrossRefGoogle Scholar
  25. 25.
    Perrey CR, Carter CB (2006) J Mater Sci 41:2711. doi: CrossRefGoogle Scholar
  26. 26.
    Williams DB, Carter CB (2008) Transmission electron microscopy: a textbook for materials science. Springer, New YorkGoogle Scholar
  27. 27.
    Heidenreich RD (1942) Phys Rev 62:291CrossRefGoogle Scholar
  28. 28.
    Chaudhari P, Matthews JW (1970) Appl Phys Lett 17:115CrossRefGoogle Scholar
  29. 29.
    Chaudhari P, Matthews JW (1971) J Appl Phys 42:3063CrossRefGoogle Scholar
  30. 30.
    Friedel G (1926) Leçons de Cristallographie. Berger-Levrault, ParisGoogle Scholar
  31. 31.
    Jones CF, Segall RL, Smart RSC, Turner PS (1980) Philos Mag A 42:267CrossRefGoogle Scholar
  32. 32.
    Altman IS, Agranovski IE (2004) Appl Phys Lett 84:5130CrossRefGoogle Scholar
  33. 33.
    Stankic S, Müller M, Diwald O, Sterrer M, Knözinger E, Bernardi J (2005) Angew Chem 44:4917CrossRefGoogle Scholar
  34. 34.
    Boothroyd CB, Humphreys CJ (1993) Ultramicroscopy 52:318CrossRefGoogle Scholar
  35. 35.
    Jones CF, Reeve RA, Rigg R, Segall RL, Smart RSC, Turner PS (1984) J Chem Soc, Faraday Trans I 80:2609CrossRefGoogle Scholar
  36. 36.
    Winterstein JP, Carter CB (2009) Submitted Google Scholar
  37. 37.
    Thölén AR (2006) J Mater Sci 41:4466. doi: CrossRefGoogle Scholar
  38. 38.
    Thölén AR, Yao Y (2003) J Colloid Interface Sci 286:362CrossRefGoogle Scholar
  39. 39.
    Yao Y, Thölén AR (1999) Nanostr Mater 12:661CrossRefGoogle Scholar
  40. 40.
    Thölén AR (1990) Phase Transitions 24–26:375CrossRefGoogle Scholar
  41. 41.
    Thölén AR (1979) Acta Metall 27:1765CrossRefGoogle Scholar
  42. 42.
    Deneen J, Mook WM, Minor A, Gerberich WW, Carter CB (2006) J Mater Sci 41:4477. doi: CrossRefGoogle Scholar
  43. 43.
    Cosandey F, Komem Y, Bauer CL, Carter CB (1978) Scr Metall 12:577CrossRefGoogle Scholar
  44. 44.
    Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New YorkGoogle Scholar
  45. 45.
    Goodhew PJ, Smith DA (1980) Scr Metall 14:59CrossRefGoogle Scholar
  46. 46.
    Otsuki A (2001) Acta Mater 49:1737CrossRefGoogle Scholar
  47. 47.
    Surholt T, Molodov DA, Herzig C (1998) Acta Mater 46:5345CrossRefGoogle Scholar
  48. 48.
    Doni EG, Bleris GL (1990) Scr Metall Mater 24:1991CrossRefGoogle Scholar
  49. 49.
    Mykura H, Bansal PS, Lewis MH (1980) Philos Mag A 42:225CrossRefGoogle Scholar
  50. 50.
    Saylor DM, Morawiec A, Adams BL, Rohrer GS (2000) Interface Sci 8:131CrossRefGoogle Scholar
  51. 51.
    Saylor DM, Morawiec A, Rohrer GS (2003) Acta Mater 51:3663CrossRefGoogle Scholar
  52. 52.
    Pond RC, Smith DA (1977) Scr Metall 11:77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Hysitron, Inc.MinneapolisUSA
  2. 2.Department of Chemical, Materials & Biomolecular EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations