Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1287–1293 | Cite as

Nanostructured physical gel of SBS block copolymer and Ag/DT/SBS nanocomposites

  • Laura Peponi
  • Agnieszka Tercjak
  • Luigi Torre
  • Iñaki Mondragon
  • Josè M. KennyEmail author
Article

Abstract

Thermoreversible physical gels of poly(styrene-b-butadiene-b-styrene) (SBS), formed by the dissolution of the block copolymer in a mid-block-selective solvent (THF), have been studied and characterized with particular attention to their morphology and rheological behavior. The effects of the addition of silver (Ag) nanoparticles to the SBS matrix, on the behavior of the physical gels, were also studied. The external surface of the Ag nanoparticles has been modified by using as surfactant material, dodecanethiol, in order to achieve their confinement in just one block of the SBS block copolymer matrix. The results of this study show that the gel stability is not affected by the presence of Ag nanoparticles. In fact, the micellar domains of the nanocomposite gel based on SBS block copolymer and Ag nanoparticles has been obtained and the physical gel behavior have been confirmed by rheological analysis.

Keywords

Block Copolymer Triblock Copolymer Diblock Copolymer Rheological Analysis Dodecanethiol 

Notes

Acknowledgement

This study was performed within the framework of the European Network of Excellence NANOFUN-POLY.

References

  1. 1.
    Whitesides GM (2005) Small 1:172CrossRefGoogle Scholar
  2. 2.
    Yin Y, Lu Y, Gates B, Xia Y (2001) J Am Chem Soc 123:8718CrossRefGoogle Scholar
  3. 3.
    Park C, Yoon J, Thomas EL (2003) Polymer 44:6725CrossRefGoogle Scholar
  4. 4.
    Whitesides GM, Grzybowski B (2002) Science 295:2418CrossRefGoogle Scholar
  5. 5.
    Nörenberg C, Castell MR (2007) Surf Sci 601:4438CrossRefGoogle Scholar
  6. 6.
    Lazzari M, Lopez-Quintela MA (2003) Adv Mater 15:1583CrossRefGoogle Scholar
  7. 7.
    Matsen MW, Bates FS (1997) J Polym Sci Part B Polym Phys 35:945CrossRefGoogle Scholar
  8. 8.
    Son SU, Jang Y, Yoon KY, Kang E, Hyeon T (2004) Nano Lett 4:1147CrossRefGoogle Scholar
  9. 9.
    Li M, Ober CK (2006) Mater Today 9:30CrossRefGoogle Scholar
  10. 10.
    Sato T, Watanabe H, Osaki K (2000) Macromolecules 331:686Google Scholar
  11. 11.
    Nijenhuis KT (1997) Adv Polym Sci 130:1CrossRefGoogle Scholar
  12. 12.
    Wedler W, Tang W, Winter HH, MacKnight WJ, Farris RJ (1995) Macromolecules 28:512CrossRefGoogle Scholar
  13. 13.
    Seitz ME, Wesley RB, Faber KT, Kenneth RS (2007) Macromolecules 40:1218CrossRefGoogle Scholar
  14. 14.
    Victorov A, Radke C, Prausnitz J (2005) J Mol Phys 103:1431CrossRefGoogle Scholar
  15. 15.
    Miller-Chou BA, Koenig JL (2003) Macromolecules 36:4851CrossRefGoogle Scholar
  16. 16.
    Ottone ML, Deiber JA (2005) Polymer 46:4928CrossRefGoogle Scholar
  17. 17.
    Enlow D, Rawal A, Kanapathipillai M, Schmidt-Rohr K, Mallepragada S, Lo C-T, Thiyagarajan P, Akinc M (2007) J Mater Chem 17:1570CrossRefGoogle Scholar
  18. 18.
    Erhardt R, Böker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller AHE (2001) Macromolecules 34:1069CrossRefGoogle Scholar
  19. 19.
    Watanabe H, Sato T, Osaki K, Yao M-L, Yamagishi A (1997) Macromolecules 30:5877CrossRefGoogle Scholar
  20. 20.
    Watanabe H, Yao M-L, Sato T, Osaki K (1997) Macromolecules 30:5905CrossRefGoogle Scholar
  21. 21.
    Kleppinger R, Van Es M, Mischenko N, Koch MHJ, Reynaers H (1998) Macromolecules 31:5805CrossRefGoogle Scholar
  22. 22.
    Daniel C (2007) Macromol Symp 251:1CrossRefGoogle Scholar
  23. 23.
    Vega DA, Sebastian JM, Loo Y-L, Register RA (2001) J Polym Sci Part B Polym Phys 39:2183CrossRefGoogle Scholar
  24. 24.
    Kempe MD, Verduzco R, Scruggs NR, Kornfield JA (2006) Soft Matter 2:422CrossRefGoogle Scholar
  25. 25.
    He Y, Boswell PG, Bühlmann P, Lodge TP (2007) J Phys Chem B 111:4645CrossRefGoogle Scholar
  26. 26.
    Das C, Inkson NJ, Read DJ, Kelmanson MA, McLeish TCB (2006) J Rheol 50:207CrossRefGoogle Scholar
  27. 27.
    Tung S-H, Huang Y-E, Raghavan SR (2007) Langmuir 23:372CrossRefGoogle Scholar
  28. 28.
    Liu Z, Cattopadhyay S, Shaw MT, Hsiao BS (2004) J Polym Sci Part B Polym Phys 42:1496CrossRefGoogle Scholar
  29. 29.
    Lionetto F, Coluccia G, D’Antona V, Maffezzoli A (2007) Rheol Acta 46:601CrossRefGoogle Scholar
  30. 30.
    Durkee DA, Gomez ED, Ellsworth MW, Bell AT, Balsara NP (2007) Macromolecules 40:5103CrossRefGoogle Scholar
  31. 31.
    Hamley IW, Pople JA, Gleeson AJ, Komanschekb BU, Towns-Andrews E (1998) J Appl Cryst 31:881CrossRefGoogle Scholar
  32. 32.
    Paglicawan MA, Balasubramanian M, Kim JK (2007) Macromol Symp 249:601CrossRefGoogle Scholar
  33. 33.
    Van Krevelen DW (1990) Properties of polymers. Elsevier, AmsterdamGoogle Scholar
  34. 34.
    Peponi L, Tercjak A, Torre L, Kenny JM, Mondragon I (2008) Compos Sci Technol 68:1631CrossRefGoogle Scholar
  35. 35.
    Peponi L, Tercjak A, Torre L, Kenny JM, Mondragon I (2009) J Nanosci Nanotechnol 9:2128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laura Peponi
    • 1
    • 2
  • Agnieszka Tercjak
    • 2
  • Luigi Torre
    • 1
  • Iñaki Mondragon
    • 2
  • Josè M. Kenny
    • 1
    Email author
  1. 1.Materials Engineering CentreUniversity of PerugiaTerniItaly
  2. 2.‘Materials + Technologies’ Group, Departmento Ingeniería Química y M. Ambiente, Escuela PolitécnicaUniversidad País Vasco/Euskal Herriko UnibertsitateaDonostia-San SebastiánSpain

Personalised recommendations