Journal of Materials Science

, Volume 44, Issue 5, pp 1294–1301 | Cite as

Effect of additives on the structure characteristics, thermal stability, reducibility and catalytic activity of CeO2–ZrO2 solid solution for methane combustion

  • Xiaohong Wang
  • Guanzhong LuEmail author
  • Yun Guo
  • Liangzhu Jiang
  • Yanglong Guo
  • Chunzhong Li


MyOx-modified CeO2–ZrO2 (M = Al, Ba, Cu, La, Nd, Pr, Si) solid solutions with the atomic ratio of Zr/Ce = 1 were prepared by the reverse microemulsion method, and the effect of different additives on the structure characteristics, thermal stability, reducibility, and catalytic activity of CeO2–ZrO2 solid solution for methane combustion were investigated. According to their different effects, MyOx can be classified into three groups. The first group includes SiO2 and Al2O3 which do not vary the crystalline phase of CeO2–ZrO2 solid solution but distort the crystal lattice obviously. They are the most effective additives for improving the surface area, thermal stability, and reducibility of CeO2–ZrO2, and they can also promote the catalytic activity of Pd/CeO2–ZrO2 for methane combustion. The second group includes La2O3, Pr2O3, and Nd2O3, which can also keep the same crystalline phase, distort the crystal lattice, and improve the surface area and thermal stability of the solid solution, but their effects are much weaker and they decrease the reducibility of the solid solution. The third group includes BaO and CuO, whose effects on the property of CeO2–ZrO2 are much different. BaO and CuO, especially CuO, can decrease the thermal stability, and reduction extent of CeO2–ZrO2. CuO-modified CeO2–ZrO2 calcined at 550 °C shows the comparable high activity for the methane combustion, but after being calcined at 900 °C, CuO-modified CeO2–ZrO2 would separate into three phases as CeO2, ZrO2, and CuO, resulting in the much lower activity for the methane catalytic combustion.


CeO2 Temperature Programme Reduction Hydrogen Consumption Pr2O3 Methane Combustion 



This study was supported financially by the National Basic Research Program of China (2004CB719500), the National Natural Science Foundation of China (20601008), the Commission of Science and Technology of Shanghai Municipality (05QMX1415, 0452nm005), and Rare Earths Office of Shanghai Municipality (200503).


  1. 1.
    Ozawa M (1998) J Alloy Compd 275–277:886CrossRefGoogle Scholar
  2. 2.
    Gandhi HS, Shelef M (1987) Stud Surf Sci Catal 30:199CrossRefGoogle Scholar
  3. 3.
    Kim G (1982) Ind Eng Chem Pro Res Dev 21:267CrossRefGoogle Scholar
  4. 4.
    Suhonen S, Valden M, Hietikko M, Laitinen R, Savimäki A, Härkönen M (2001) Appl Catal A Gen 218:151CrossRefGoogle Scholar
  5. 5.
    Schulz H, Stark WJ, Maciejewski M, Pratsinis SE, Baiker A (2003) J Mater Chem 13:2979CrossRefGoogle Scholar
  6. 6.
    Fernández-García M, Martínez-Arias A, Guerrero-Ruiz A, Conesa JC, Soria J (2002) J Catal 211:326CrossRefGoogle Scholar
  7. 7.
    Chen M, Zhang P, Zheng X (2004) Catal Today 93–95:671CrossRefGoogle Scholar
  8. 8.
    Wang W, Lin P, Fu Y, Cao G (2002) Catal Lett 82:19CrossRefGoogle Scholar
  9. 9.
    Ikryannikova LN, Markaryan GL, Kaharlanov AN, Lunia EV (2003) Appl Surf Sci 207:100CrossRefGoogle Scholar
  10. 10.
    Choudhary TV, Banerjee S, Choudhary VR (2002) Appl Catal A Gen 234:1CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Andersson S, Muhammed M (1995) Appl Catal B Environ 6:325CrossRefGoogle Scholar
  12. 12.
    Zamar F, Trovarelli A, Deleitenburg C, Dolcetti G (1995) J Chem Soc Chem Commun 9:965CrossRefGoogle Scholar
  13. 13.
    Wang X, Lu G, Guo Y, Wang Y, Guo Y (2005) Mater Chem Phys 90:225CrossRefGoogle Scholar
  14. 14.
    Horiuchi T, Chen L, Osaki T, Sugiyama T, Suzuki K, Mori T (1999) Catal Lett 58:89CrossRefGoogle Scholar
  15. 15.
    Horiuchi T, Osaki T, Sujiyama T, Suzuki K, Mori T (2001) J Non-Crystal Solids 291:187CrossRefGoogle Scholar
  16. 16.
    Hori CE, Permana H, Simon Ng KY, Brenner A, More K, Rahmoeller KM, Belton D (1998) Appl Catal B 16:105CrossRefGoogle Scholar
  17. 17.
    Campostrinil R, Ischial M, Armelao L (2004) J Therm Anal Calorim 78:657CrossRefGoogle Scholar
  18. 18.
    Wiench JW, Avadhut YS, Maity N, Bhaduri S, Lahiri GK, Pruski M, Ganapathy S (2007) J Phys Chem B 111:3877CrossRefGoogle Scholar
  19. 19.
    Sales JAA, Petrucelli GC, Oliveira FJVE, Airoldi C (2007) J Colloid Interface Sci 315:426CrossRefGoogle Scholar
  20. 20.
    Hu LH, Ji SF, Xiao TC, Guo CX, Wu PY, Nie PY (2007) J Phys Chem B 111:3599CrossRefGoogle Scholar
  21. 21.
    Choy JH, Yoon JB, Jung H, Park JH (2004) J Porous Mater 11:123CrossRefGoogle Scholar
  22. 22.
    Yuan Z, Liu S, Chen T, Wang J, Li H (1995) J Chem Soc Commun 9:973CrossRefGoogle Scholar
  23. 23.
    Vlaic G, Fornasiero P, Geremia S, Kaspar J, Graziani M (1997) J Catal 168:386CrossRefGoogle Scholar
  24. 24.
    Fraga MA, Soares de Souza E, Villain F, Appel LG (2004) Appl Catal A Gen 259:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaohong Wang
    • 1
    • 2
  • Guanzhong Lu
    • 1
    Email author
  • Yun Guo
    • 1
  • Liangzhu Jiang
    • 1
  • Yanglong Guo
    • 1
  • Chunzhong Li
    • 2
  1. 1.Lab for Advanced MaterialsResearch Institute of Industrial Catalysis, East China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations