Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1324–1332 | Cite as

Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites

  • Xiaolang Chen
  • Jie Yu
  • Shaoyun Guo
  • Shengjun Lu
  • Zhu Luo
  • Min He
Article

Abstract

In this article, titanate and zinc stearate modified superfine magnesium hydroxide [Mg(OH)2] was filled into polypropylene (PP) as a flame retardant (FR). The structure and morphologies of untreated and treated Mg(OH)2 particles were characterized by Fourier transform infrared (FTIR), wide-angle X-ray diffraction (WAXD), and scanning electron microscope (SEM). PP/Mg(OH)2 (1:1) composites were also prepared in co-rotating twin-screw extruder, and the effects of treatment agents on the rheological behavior, mechanical properties, and flame retardancy of PP/Mg(OH)2 composites were studied. The results from FTIR and WAXD show that treatment agents are adsorbed onto the surface of Mg(OH)2 particles. The complex viscosity (η*) values of the composites decrease with the addition of various treatment agents. Surface treatment agent could significantly improve tensile and impact strength of PP/Mg(OH)2 composites due to its enhanced interfacial adhesion between Mg(OH)2 particles and the PP matrix. According to limiting oxygen index (LOI), titanate treated magnesium hydroxide (MH) greatly enhanced flame retardancy of PP/Mg(OH)2 composites.

Keywords

Impact Strength Flame Retardancy Treatment Agent Coupling Agent Expandable Graphite 

Notes

Acknowledgements

The authors are grateful to Science and Technology Foundation of Guizhou province [(2008)7001], Hope Stars Foundation of Southwest Jiaotong University (2008-12), National 863 Project Foundation of China (2003AA32X230), and National Science and Technology Supporting Project Foundation of China (2007BAB08B05) for financial supports of this work.

References

  1. 1.
    Rothon RN (1995) Particulate-filled polymer composites. Longmans, Harlow, NYGoogle Scholar
  2. 2.
    Chiu S, Wang W (1998) J Appl Polym Sci 67:989CrossRefGoogle Scholar
  3. 3.
    Tal CM, Robert K, Li Y (2001) J Polym Sci Part B: Polym Phys 80:2718Google Scholar
  4. 4.
    Warren LM (1988) Plast Technol 34:54Google Scholar
  5. 5.
    Kim S (2003) J Polym Sci, Part B: Polym Phys 41:936CrossRefGoogle Scholar
  6. 6.
    Wang ZZ, Wu GS, Hu Y (2002) Polym Degrad Stab 77:427CrossRefGoogle Scholar
  7. 7.
    Modesti M, Lorenzetti A, Simioni F et al (2002) Polym Degrad Stab 77:195CrossRefGoogle Scholar
  8. 8.
    Chen X, Wu H, Luo Z, Yang B, Guo S, Yu J (2007) Polym Eng Sci 49:1756CrossRefGoogle Scholar
  9. 9.
    Chen X, Yu J, Guo S, Luo Z (2008) J Macromol Sci, Part A: Pure and Appl Chem 45:712CrossRefGoogle Scholar
  10. 10.
    Chen X, Yu J, Guo S, Luo Z, He M, Polym Compos. doi: https://doi.org/10.1002/pc.20638 CrossRefGoogle Scholar
  11. 11.
    Chen X, Yu J, He M, Guo S, Luo Z, Lu S, J Polym Res. doi:  https://doi.org/10.1007/s10965-008-9236-9 CrossRefGoogle Scholar
  12. 12.
    Hornsby PR (2004) Fire Mater 18:269CrossRefGoogle Scholar
  13. 13.
    Wang ZZ, Qu BJ, Fan WC, Huang P (2001) J Appl Polym Sci 81:206CrossRefGoogle Scholar
  14. 14.
    Chen X, Yu J, Guo S (2006) J Appl Polym Sci 102:4943CrossRefGoogle Scholar
  15. 15.
    Monte SJ, Sugerman G (1984) Polym Eng Sci 24:1369CrossRefGoogle Scholar
  16. 16.
    Cook M, Harper JF (1996) Plast Rubb Proc Appl 25:99Google Scholar
  17. 17.
    Demjen Z, Pukanszky B (1997) Polym Compos 18:741CrossRefGoogle Scholar
  18. 18.
    Chuah AW, Leong YC, Gan SN (2000) Eur Polym J 72:313Google Scholar
  19. 19.
    Wang ZZ, Shen XF, Fan WC et al (2002) Polym Int 51:653CrossRefGoogle Scholar
  20. 20.
    Griffiths JB (1990) Plast Rubb Process Appl 13:3Google Scholar
  21. 21.
    Hornsby PR, Waston CL (1995) J Mater Sci 30:5437. doi: https://doi.org/10.1007/BF01159314 CrossRefGoogle Scholar
  22. 22.
    Hornsby PR, Mthupha A (1996) Plast Rubb Proc Appl 25:347Google Scholar
  23. 23.
    Wang J, Tung JF, Fuad MYA et al (1996) J Appl Polym Sci 60:425CrossRefGoogle Scholar
  24. 24.
    Han CD, Sandford C, Yoo HJ (1978) Polym Eng Sci 18:849CrossRefGoogle Scholar
  25. 25.
    Carpentier F, Bourbigot S, Bras M, Delobel R (2000) Polym Int 49:1216CrossRefGoogle Scholar
  26. 26.
    Han CD, Weghe TVD, Shete P, Haw JR (1981) Polym Eng Sci 21:196CrossRefGoogle Scholar
  27. 27.
    Jha NK, Misra AC, Bajaj P (1986) Polym Eng Sci 26:332CrossRefGoogle Scholar
  28. 28.
    Rybnikar F (1981) J Macromol Sci Phys B 19:1CrossRefGoogle Scholar
  29. 29.
    Mitsuishi K, Ueno S, Kodama S et al (1991) J Appl Polym Sci 43:2043CrossRefGoogle Scholar
  30. 30.
    Salkar RA, Jeevandam P, Kataby G et al (2000) J Phys Chem B 104:893CrossRefGoogle Scholar
  31. 31.
    Cuttity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company, Inc., Reading, MA, USA, p 555Google Scholar
  32. 32.
    Hippi U, Mattila J, Korhonen M, Seppälä J (2003) Polymer 44:1193CrossRefGoogle Scholar
  33. 33.
    Wang Y, Yu M (2000) J Polym Compos 21:1CrossRefGoogle Scholar
  34. 34.
    Kwang JK, James LW, Sang ES et al (2004) J Appl Polym Sci 93:2105CrossRefGoogle Scholar
  35. 35.
    Chen X, Yu J, Guo S (2007) J Appl Polym Sci 103:1978CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaolang Chen
    • 1
    • 2
  • Jie Yu
    • 2
  • Shaoyun Guo
    • 3
  • Shengjun Lu
    • 2
  • Zhu Luo
    • 2
  • Min He
    • 2
  1. 1.Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.National Engineering Research Center for Compounding and Modification of Polymer Materials, Materials Eng and Tech Innovation Center of GuizhouGuiyangChina
  3. 3.The State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations