Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1308–1316 | Cite as

Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate

  • Qingliang He
  • Lei Song
  • Yuan Hu
  • Shun Zhou
Article

Abstract

A series of flame retardant hybrids were prepared based on bisphenol A polycarbonate (PC), trisilanolphenyl-polyhedral oligomeric silsesquioxane (TPOSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) by melt blending method. The thermal stability and flame retardant properties of the hybrids were investigated by thermogravimetry analysis and cone calorimeter. Combination TPOSS with BDP in the appropriate ratio enhanced the thermal stability and the flame retardant properties of the PC matrix. The char residues of the hybrids were investigated by scan electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The synergistic effect of BDP and TPOSS enhances the thermal stability and fire-resistance of the char layer which builds up on the surface of the burning polymer.

Keywords

Flame Retardant Heat Release Rate Cone Calorimeter Char Residue Total Heat Release 

Notes

Acknowledgement

This study was financially supported by the National Natural Science Foundation of China (No. 50403014), and the National 11th five-year Program (No. 2006BAK06B06).

References

  1. 1.
    Pham HT, Munjal S, Bosnyak CP (1997) In: Olabisi O (ed) Handbook of thermoplastics. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Lee LH (1964) J Polym Sci A 2:2859Google Scholar
  3. 3.
    Bozi J, Czegeny Z, Meszaros E, Blazso M (2007) J Anal Appl Pyrol 79:337CrossRefGoogle Scholar
  4. 4.
    Puglisi C, Sturiale L, Montaudo G (1999) Macromolecules 32:2194CrossRefGoogle Scholar
  5. 5.
    Montaudo G, Carroccio S, Puglisi C (2002) J Anal Appl Pyrol 64:229CrossRefGoogle Scholar
  6. 6.
    Davis A, Golden JH (1967) Macromol Chem 110:180CrossRefGoogle Scholar
  7. 7.
    Jang BN, Wilkie CA (2005) Thermochim Acta 426:73CrossRefGoogle Scholar
  8. 8.
    Levchik SV, Weil ED (2005) Polym Int 54:981CrossRefGoogle Scholar
  9. 9.
    Liu S, Ye H, Zhou Y, He J, Jiang Z, Zhao J, Huang X (2006) Polym Degrad Stabil 91:1808CrossRefGoogle Scholar
  10. 10.
    Zhou W, Yang H, Zhou J (2007) J Anal Appl Pyrol 78:413CrossRefGoogle Scholar
  11. 11.
    Pawlowski KH, Schartel B (2007) Polym Int 56:1404CrossRefGoogle Scholar
  12. 12.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Thermochim Acta 440:36CrossRefGoogle Scholar
  13. 13.
    Liu YR, Huang YD, Liu L (2007) Compos Sci Technol 67:2864CrossRefGoogle Scholar
  14. 14.
    Liu YR, Huang YD, Liu L (2006) Polym Degrad Stabil 91:2731CrossRefGoogle Scholar
  15. 15.
    Zhao YQ, Schiraldi DA (2005) Polymer 46:11640CrossRefGoogle Scholar
  16. 16.
    Song L, He QL, Hu Y, Chen H, Liu L (2008) Polym Degrad Stabil 93:627CrossRefGoogle Scholar
  17. 17.
    Schartel B, Hull TR (2007) Fire Mater 31:327CrossRefGoogle Scholar
  18. 18.
    Zhu SW, Shi WF (2003) Polym Degrad Stabil 80:217CrossRefGoogle Scholar
  19. 19.
    Li Q, Jiang PK, Wei P (2005) J Polym Sci Poly Phys 43:2548CrossRefGoogle Scholar
  20. 20.
    Hsiue GH, Liu YL, Tsiao J (2000) J Appl Polym Sci 78:1CrossRefGoogle Scholar
  21. 21.
    Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Macromol Mater Eng 289:499CrossRefGoogle Scholar
  22. 22.
    Liu YL, Hsiue GH, Chiu YS, Jeng RJ, Perng LH (1996) J Appl Polym Sci 61:613CrossRefGoogle Scholar
  23. 23.
    Liu YL, Hsiue GH, Lan CW, Chiu YS (1997) Polym Degrad Stabil 56:291CrossRefGoogle Scholar
  24. 24.
    Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T (2000) Fire Mater 24:201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations