Journal of Materials Science

, Volume 44, Issue 5, pp 1212–1218 | Cite as

Stress-based model on work hardening and softening of materials at large strains: corrugation process of sheet

  • E. Hosseini
  • M. Kazeminezhad


In this article, a stress-based model is proposed to investigate the strength evolution during severe plastic deformation (SPD) or large strains. In this model, the work hardening mechanisms are described by Frank-Read sources, while the cross-slip and climb processes are considered as the mechanisms for work softening phenomenon. Within all SPD processes, one of corrugation processes such as constrained groove pressing is chosen to assess the validity of the model predictions. The model predictions are in agreement with the earlier reports and the experimental results achieved in this study.


Dislocation Density Severe Plastic Deformation Screw Dislocation Cell Interior Accumulative Roll Bonding 



The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used for this study.


  1. 1.
    Aretz H, Luce R, Wolske M et al (2000) Modell Simul Mater Sci Eng 8:881CrossRefGoogle Scholar
  2. 2.
    Estrin Y, Kim HS (2007) J Mater Sci 42:1512. doi: CrossRefGoogle Scholar
  3. 3.
    Kazeminezhad M, Hosseini E (2008) J Mater Sci 43:6081. doi: CrossRefGoogle Scholar
  4. 4.
    Haddadi H, Bouvier S, Banu M et al (2006) Int J Plast 22:2226CrossRefGoogle Scholar
  5. 5.
    Lopesa AB, Barlatb F, Gracioc JJ et al (2003) Int J Plast 19:1CrossRefGoogle Scholar
  6. 6.
    Roters F, Raabe D, Gottstin G (2000) Acta Mater 48:4181CrossRefGoogle Scholar
  7. 7.
    Goerdeler M, Crumbach M, Schneider M et al (2004) Mater Sci Eng A 387–389:266CrossRefGoogle Scholar
  8. 8.
    Prasad GVSS, Goerdeler M, Gottstein G (2005) Mater Sci Eng A 400–401:231CrossRefGoogle Scholar
  9. 9.
    Ma A, Roters F (2004) Acta Mater 52:3603CrossRefGoogle Scholar
  10. 10.
    Estrin Y, Toth LS, Molinari A et al (1998) Acta Mater 46:5509CrossRefGoogle Scholar
  11. 11.
    Estrin Y, Mecking H (1984) Acta Mater 32:57CrossRefGoogle Scholar
  12. 12.
    Mulders B, Zehetbauer M, Gottstein G et al (2002) Mater Sci Eng A 324:244CrossRefGoogle Scholar
  13. 13.
    Baik SC, Estrin Y, Kim HS et al (2003) Mater Sci Eng A 351:86CrossRefGoogle Scholar
  14. 14.
    Estrin Y, Molotnikov A, Davies CHJ et al (2008) J Mech Phys Solids 56:1186CrossRefGoogle Scholar
  15. 15.
    Richert M, Stuwe HP, Zehetbauer MJ et al (2003) Mater Sci Eng A 355:180CrossRefGoogle Scholar
  16. 16.
    Mckenzie PWJ, Lapovok R, Estrin Y (2007) Acta Mater 55:2985CrossRefGoogle Scholar
  17. 17.
    Toth LS, Molinari A, Estrin Y (2002) J Eng Mater Technol 124:71CrossRefGoogle Scholar
  18. 18.
    Goerdeler M, Gottstein G (2001) Mater Sci Eng A 309–310:377CrossRefGoogle Scholar
  19. 19.
    Zhilyaev AP, Swaminathan S, Gimazov AA et al (2008) J Mater Sci 43:7451. doi: CrossRefGoogle Scholar
  20. 20.
    Ivanisenko Y, Wunderlich RK, Valiev RZ et al (2003) Scr Mater 49:947CrossRefGoogle Scholar
  21. 21.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  22. 22.
    Chowdhury SG, Mondal A, Gubicza J et al (2008) Mater Sci Eng 490A:335CrossRefGoogle Scholar
  23. 23.
    Mishra A, Kad BK, Gregori F et al (2007) Acta Mater 55:13CrossRefGoogle Scholar
  24. 24.
    Shin DH, Park JJ, Kim YS et al (2002) Mater Sci Eng A 328:98CrossRefGoogle Scholar
  25. 25.
    Ungár T (2007) J Mater Sci 42:1584. doi: CrossRefGoogle Scholar
  26. 26.
    Sivaraman A, Chakkingal U (2008) J Mater Sci 43:7432. doi: CrossRefGoogle Scholar
  27. 27.
    Huang JY, Zhu YT, Jiang H et al (2001) Acta Mater 49:1497CrossRefGoogle Scholar
  28. 28.
    Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi: CrossRefGoogle Scholar
  29. 29.
    Nedjad SH, Meidani H, Ahmadabadi MN (2008) Mater Sci Eng A 475:224CrossRefGoogle Scholar
  30. 30.
    Enikeev NA, Kimb HS, Alexandrov IV (2007) Mater Sci Eng A 460–461:619CrossRefGoogle Scholar
  31. 31.
    Mulyukov RR, Imayev RM, Nazarov AA (2008) J Mater Sci 43:7257. doi: CrossRefGoogle Scholar
  32. 32.
    Xia K, Wu X, Honma T et al (2007) J Mater Sci 42:1551. doi: CrossRefGoogle Scholar
  33. 33.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344CrossRefGoogle Scholar
  34. 34.
    Kamikawa N, Tsuji N, Minamino Y (2004) Sci Technol Adv Mater 5:163CrossRefGoogle Scholar
  35. 35.
    Saito Y, Tsuji N, Utsunomiya H et al (1998) Scr Mater 39:1221CrossRefGoogle Scholar
  36. 36.
    Lee JW, Park JJ (2002) J Mater Process Technol 130:208CrossRefGoogle Scholar
  37. 37.
    Peng K, Su L, Shaw LL et al (2007) Scr Mater 56:987CrossRefGoogle Scholar
  38. 38.
    Toth LS (2005) Comput Mater Sci 32:568CrossRefGoogle Scholar
  39. 39.
    Krishnaiah A, Chakkingal U, Venugopal P (2005) Mater Sci Eng A 410:337CrossRefGoogle Scholar
  40. 40.
    Les P, Zehetbauer MJ (1994) Key Eng Mater 97:335Google Scholar
  41. 41.
    Zehetbauer MJ (1993) Acta Mater 41:589CrossRefGoogle Scholar
  42. 42.
    Zehetbauer MJ, Stuwe HP, Vorhauer A et al (2003) Adv Eng Mater 5:330CrossRefGoogle Scholar
  43. 43.
    Mecking H, Kocks U (1981) Acta Mater 29:1865CrossRefGoogle Scholar
  44. 44.
    Wildsford DK (1999) Metall Mater Trans A 30:2391CrossRefGoogle Scholar
  45. 45.
    Lapovok R, Torre FHD, Sandlin J et al (2005) J Mech Phys Solids 53:729CrossRefGoogle Scholar
  46. 46.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar
  47. 47.
    Nes E, Marthinsen K (2002) Mater Sci Eng A 322:176CrossRefGoogle Scholar
  48. 48.
    Peczak P (1995) Acta Metall Mater 43:1279CrossRefGoogle Scholar
  49. 49.
    Rezvanian O, Zikry MA, Rajendran AM (2006) Mech Mater 38:1159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations