Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1245–1250 | Cite as

Microwave-induced rapid nanocomposite synthesis using dispersed single-wall carbon nanotubes as the nuclei

  • Subhendu Ray Chowdhury
  • Yuhong Chen
  • Yubing Wang
  • Somenath Mitra
Article

Abstract

Single-wall carbon nanotubes (SWNTs) provide a reactive environment in presence of microwave radiation because they absorb the energy that leads to fast, direct heating. This makes composite formation in a microwave reactor highly feasible where the SWNTs serve as the nuclei for polymerization. In this article, we demonstrate rapid, in situ synthesis of poly(methyl methacrylate) (PMMA) and polyvinylpyrrolidone (PVP) nanocomposites using their respective monomers. The key to their success was the use of the highly dispersible SWNTs, which had strong interactions with the monomer and the polymer. Rapid synthesis within a few minutes was possible, which led to remarkable nano-scale dispersion of nanotubes in polymer matrix by encapsulation of the already dispersed SWNTs before the latter could agglomerate. The molecular weight and polydispersity of the polymers remained unchanged in the presence of the SWNTs. The addition of 0.5 wt% SWNT to PMMA enhanced its thermal stability (as measured by the initial degradation temperature) by 37 °C and the hardness by around 50%. On the other hand, with the addition of up to 4 wt% SWNT, the PVP showed no enhancement in thermal stability but its hardness increased by 250–300%. Finally, this technique is practical because it reduces time, cost, and energy requirements.

Keywords

PMMA Microwave Radiation AIBN Composite Formation Microwave Reactor 

References

  1. 1.
    Andrews R, Jacques D, Minot M, Rantell T (2002) Macromol Mater Eng 287:395CrossRefGoogle Scholar
  2. 2.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767CrossRefGoogle Scholar
  3. 3.
    Sengupta R, Ganguly A, Sabharwal S, Chaki TK, Bhowmick AK (2007) J Mater Sci 42:923. doi: https://doi.org/10.1007/s10853-006-0011-1 CrossRefGoogle Scholar
  4. 4.
    Kovalchuk A, Shevchenko V, Shchegolikhin A, Nedorezova P, Klyamkina A, Aladyshev A (2008) J Mater Sci 43:7132. doi: https://doi.org/10.1007/s10853-008-3029-8 CrossRefGoogle Scholar
  5. 5.
    Guo H, Rasheed A, Minus M, Kumar S (2008) J Mater Sci 43:4363. doi: https://doi.org/10.1007/s10853-008-2556-7 CrossRefGoogle Scholar
  6. 6.
    Das NC, Maiti S (2008) J Mater Sci 43:1920. doi: https://doi.org/10.1007/s10853-008-2458-8 CrossRefGoogle Scholar
  7. 7.
    Grujicic M, Angstadt DC, Sun YP, Koudela KL (2007) J Mater Sci 42:4609. doi: https://doi.org/10.1007/s10853-006-0520-y CrossRefGoogle Scholar
  8. 8.
    Li SQ, Wang F, Wang Y, Wang JW, Ma J, Xiao J (2008) J Mater Sci 43:2653. doi: https://doi.org/10.1007/s10853-008-2489-1 CrossRefGoogle Scholar
  9. 9.
    Chen Y-C, Raravikar NR, Schadler LS, Ajayan PM, Zhao Y-P, Lu T-M, Wang G-C, Zhang X-C (2002) Appl Phys Lett 81:975CrossRefGoogle Scholar
  10. 10.
    Alexandrou I, Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:1435CrossRefGoogle Scholar
  11. 11.
    O’Rourke Muisener PA, Clayton L, D’Angelo J, Harmon JP, Sikder AK, Kumar A, Cassell AM, Meyyappan M (2002) J Mater Res 17:2507CrossRefGoogle Scholar
  12. 12.
    Landi BJ, Raffaelle RP, Heben MJ, Alleman JL, VanDerveer W, Gennett T (2002) Nano Lett 2:1329CrossRefGoogle Scholar
  13. 13.
    Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:112CrossRefGoogle Scholar
  14. 14.
    Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) Adv Mater 10:1091CrossRefGoogle Scholar
  15. 15.
    Yang Z, Dong B, Huang Y, Liu L, Yan F-Y, Li H-L (2005) Mater Lett 59:2128CrossRefGoogle Scholar
  16. 16.
    Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76:2511CrossRefGoogle Scholar
  17. 17.
    Sinnott SB, Shenderova OA, White CT, Brenner DW (1998) Carbon 36:1CrossRefGoogle Scholar
  18. 18.
    Lourie O, Wagner HD (1998) Appl Phys Lett 73:3527CrossRefGoogle Scholar
  19. 19.
    Ye HH, Lam H, Titchenal N, Gogotsi Y, Ko F (2004) Appl Phys Lett 85:1775CrossRefGoogle Scholar
  20. 20.
    Zhang XF, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley RE (2003) Nano Lett 3:1285CrossRefGoogle Scholar
  21. 21.
    Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Chem Phys Lett 330:219CrossRefGoogle Scholar
  22. 22.
    Putz KW, Mitchell CA, Krishnamoorti R, Green PF (2004) J Polym Sci Part B Polym Phys 42:2286CrossRefGoogle Scholar
  23. 23.
    Peigney A, Laurent Ch, Flahaut E, Rousset A (2000) Ceram Int 26:677CrossRefGoogle Scholar
  24. 24.
    Mäder E, Rothe C, Gao S-L (2007) J Mater Sci 42:8062. doi: https://doi.org/10.1007/s10853-006-1481-x CrossRefGoogle Scholar
  25. 25.
    Grujicic M, Pandurangan B, Angstadt DC, Koudela KL, Cheeseman BA (2007) J Mater Sci 42:5347. doi: https://doi.org/10.1007/s10853-006-0959-x CrossRefGoogle Scholar
  26. 26.
    Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000) Chem Mater 12:1049CrossRefGoogle Scholar
  27. 27.
    Barraza HJ, Pompeo F, O’Rea EA, Resasco DE (2002) Nano Lett 2:797CrossRefGoogle Scholar
  28. 28.
    Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967CrossRefGoogle Scholar
  29. 29.
    Velasco-Santos C, Martínez-Hernández AL, Fisher F, Ruoff R, Castaño VM (2003) J Phys D Appl Phys 36:1423CrossRefGoogle Scholar
  30. 30.
    Valentini L, Biagiotti J, Kenny JM, López Manchado MA (2003) J Appl Polym Sci 89:2657CrossRefGoogle Scholar
  31. 31.
    Zhu J, Kim JD, Peng HQ, Margrave JL, Khabashesku VN, Barrera EV (2003) Nano Lett 3:1107CrossRefGoogle Scholar
  32. 32.
    Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Zhou O (2002) Adv Mater 14:1387CrossRefGoogle Scholar
  33. 33.
    Ramanathan T, Liu H, Brinson LC (2005) J Polym Sci Part B Polym Phys 43:2269CrossRefGoogle Scholar
  34. 34.
    Skákalová V, Dettlaff-Weglikowska U, Roth S (2005) Synth Met 152:349CrossRefGoogle Scholar
  35. 35.
    Gorga RE, Lau KKS, Gleason KK, Cohen RE (2006) J Appl Polym Sci 102:1413CrossRefGoogle Scholar
  36. 36.
    Wang M, Pramoda KP, Goh SH (2006) Carbon 44:613CrossRefGoogle Scholar
  37. 37.
    Shaabani A, Bazgir A (2004) Tetrahedron Lett 45:2575CrossRefGoogle Scholar
  38. 38.
    Hoogenboom R, Schubert US (2006) Green Chem 8:895CrossRefGoogle Scholar
  39. 39.
    Chen YH, Iqbal Z, Mitra S (2007) Adv Funct Mater 17:3946CrossRefGoogle Scholar
  40. 40.
    Wang YB, Iqbal Z, Mitra S (2006) J Am Chem Soc 128:95CrossRefGoogle Scholar
  41. 41.
    Wang YB, Iqbal Z, Mitra S (2005) Carbon 43:1015CrossRefGoogle Scholar
  42. 42.
    Wang YB, Iqbal Z, Mitra S (2006) Carbon 44:2804CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Subhendu Ray Chowdhury
    • 1
  • Yuhong Chen
    • 1
  • Yubing Wang
    • 1
  • Somenath Mitra
    • 1
  1. 1.Department of Chemistry and Environmental ScienceNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations