Journal of Materials Science

, Volume 44, Issue 5, pp 1172–1179 | Cite as

Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range

  • E. Tan
  • Y. Kagawa
  • A. F. DericiogluEmail author


This article investigates the electromagnetic wave-absorbing properties of SiC-based ceramic woven fabrics. The electrical conductivity of ceramic woven fabrics was modified by heat treatment in air, resulting in oxidation, and the electromagnetic wave absorption potential of single- and double-layer ceramic woven fabrics were determined in the 17–40 GHz frequency range using the free-space method. The absorption potentials of ceramic woven fabrics of different chemical composition and weave were correlated with their material properties through X-ray diffraction, scanning electron microscopy, and electrical resistance measurement. The effect of the different arrangements of fabrics in multilayer forms, and how oxidation affects the electromagnetic wave absorption potential of the fabrics are discussed. Various double-layer combinations of SiC-based woven fabrics revealed promising potentials for both reduced reflection and transmission, resulting in ~90% absorption in the GHz range, which makes them powerful candidate materials for electromagnetic wave absorption applications.


Electromagnetic Wave Transmission Loss Reflection Loss Horn Antenna Absorption Potential 


  1. 1.
    Neelkanta PS (1995) Handbook of electromagnetic materials: monolithic and composite versions and their applications. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Feng YB, Qiu T, Shen CY, Li XY (2006) IEEE Trans Magn 42:363CrossRefGoogle Scholar
  3. 3.
    Li J, Huang J, Qin Y, Ma F (2007) Mater Sci Eng B 138:199CrossRefGoogle Scholar
  4. 4.
    Pinho MS, Gregori ML, Nunes RCR, Soares BG (2002) Eur Polym J 38:2321CrossRefGoogle Scholar
  5. 5.
    Singh P, Babbar VK, Razdan A, Srivastava SL, Puri RK (1999) Mater Sci Eng B 67:132CrossRefGoogle Scholar
  6. 6.
    Chin WS, Lee DG (2007) Compos Struct 77:457CrossRefGoogle Scholar
  7. 7.
    Oh J-H, Oh K-S, Kim C-G, Hong C-S (2004) Composites B 35:49CrossRefGoogle Scholar
  8. 8.
    Dishovsky N, Grigorova M (2000) Mater Res Bull 35:403CrossRefGoogle Scholar
  9. 9.
    Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo J (1999) Synth Met 102:1346CrossRefGoogle Scholar
  10. 10.
    Kim T, Chung D (2006) J Mater Eng Perform 15:295CrossRefGoogle Scholar
  11. 11.
    Shui XP, Chung DDL (2000) J Mater Sci 35:1773. doi: CrossRefGoogle Scholar
  12. 12.
    Tellakula RA, Varadan VK, Shami TC, Mathur GN (2004) Smart Mater Struct 13:1040CrossRefGoogle Scholar
  13. 13.
    Hochet N, Berger MH, Bunsell AR (1997) J Microsc 185:243CrossRefGoogle Scholar
  14. 14.
    Kakimoto K, Shimoo T, Okamura K (1997) J Ceram Soc Jpn 105:504CrossRefGoogle Scholar
  15. 15.
    Kishimoto H, Katoh Y, Kohyama A (2002) J Nucl Mater 307:1130CrossRefGoogle Scholar
  16. 16.
    Kagawa Y, Imahashi Y, Iba H, Naganuma T, Matsumura K (2003) J Mater Sci Lett 22:159CrossRefGoogle Scholar
  17. 17.
    Kagawa Y, Matsumura K, Iba H, Imahashi Y (2007) J Mater Sci 42:1116. doi: CrossRefGoogle Scholar
  18. 18.
    Tyranno Fiber R Catalog (2001) Ube Industries Co., LtdGoogle Scholar
  19. 19.
    Matsumura K, Kagawa Y (2007) J Mater Sci 42:3251. doi: CrossRefGoogle Scholar
  20. 20.
    Seo IS, Chin WS, Lee DG (2004) Compos Struct 66:533CrossRefGoogle Scholar
  21. 21.
    Ghodgaonkar DK, Varadan VV, Varadan VK (1990) IEEE Trans Instrum Meas 39:387CrossRefGoogle Scholar
  22. 22.
    Shimoo T, Morisada Y, Okamura K (2002) J Mater Sci 37:4361. doi: CrossRefGoogle Scholar
  23. 23.
    Duffrene L, Kieffer J (1998) J Phys Chem Solid 59:1025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkaraTurkey
  2. 2.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations