Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1206–1211 | Cite as

Percolation in networks of aligned SWNTs formed with laminar flow deposition

  • Qinghui Zhang
  • Pornnipa Vichchulada
  • Meagan A. Cauble
  • Marcus D. LayEmail author
Article

Abstract

Macroscopic networks of highly aligned SWNTs have been fabricated at room temperature by laminar flow deposition from aqueous suspensions. This deposition method allows the growth of a macroscopic two dimensional SWNT network through successive deposition cycles. AFM image analysis showed that each deposition cycle puts down a reproducible density of SWNTs, with the final density being directly proportional to the number of deposition cycles for a given solution. The macroscopic electronic behavior of these networks was characterized by DC conductance measurements taken after each deposition cycle. This showed that these networks could be described by two dimensional percolation models throughout the growth process.

Keywords

Critical Exponent Percolation Theory Deposition Cycle Dimensional Network Sonication Power 

References

  1. 1.
    Kim JY, Sohn D, Kim ER (2001) Appl Phys A Mater Sci Process 72:699CrossRefGoogle Scholar
  2. 2.
    Barnes TM, Wu X, Zhou J, Duda A, Van de Lagemaat J, Coutts TJ, Weeks CL, Britz DA, Glatkowski P (2007) Appl Phys Lett 90:3CrossRefGoogle Scholar
  3. 3.
    Moller S, Perlov C, Jackson W, Taussig C, Forrest SR (2003) Nature 426:166CrossRefGoogle Scholar
  4. 4.
    von Arx M, Paul O, Baltes H (2000) J Microelectromech Syst 9:136CrossRefGoogle Scholar
  5. 5.
    Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Science 305:1273CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Schattka JH, Antonietti M (2004) Nano Lett 4:477CrossRefGoogle Scholar
  7. 7.
    Vichchulada P, Zhang Q, Lay MD (2007) Analyst 132:719CrossRefGoogle Scholar
  8. 8.
    Shiraishi M, Takenobu T, Iwai T, Iwasa Y, Kataura H, Ata M (2004) Chem Phys Lett 394:110CrossRefGoogle Scholar
  9. 9.
    Meitl MA, Zhou YX, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Nano Lett 4:1643CrossRefGoogle Scholar
  10. 10.
    Zhou YX, Hu LB, Gruner G (2006) Appl Phys Lett 88:123109CrossRefGoogle Scholar
  11. 11.
    Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li XS, Yao ZL, Ou FS, Avadhanula A, Vajtai R, Curran S, Nalamasu O, Ajayan PM (2006) Nano Lett 6:413CrossRefGoogle Scholar
  12. 12.
    Bradley K, Gabriel JCP, Gruner G (2003) Nano Lett 3:1353CrossRefGoogle Scholar
  13. 13.
    Armitage NP, Gabriel JCP, Gruner G (2004) J Appl Phys 95:3228CrossRefGoogle Scholar
  14. 14.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002) Science 297:593CrossRefGoogle Scholar
  15. 15.
    Vichchulada P, Shim J, Lay Marcus D (2008) J Phys Chem C 112:19186CrossRefGoogle Scholar
  16. 16.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361CrossRefGoogle Scholar
  17. 17.
    Sahimi M (1994) Applications of percolation theory. Taylor and Francis Ltd, LondonGoogle Scholar
  18. 18.
    Stauffer D (1985) Introduction to percolation theory. Taylor and Francis Ltd, London Google Scholar
  19. 19.
    Pike GE, Seager CH (1974) Phys Rev B 10:1421CrossRefGoogle Scholar
  20. 20.
    Obukhov SP (1988) J Phys A Math Gen 21:3975CrossRefGoogle Scholar
  21. 21.
    Balberg I, Binenbaum N, Anderson CH (1983) Phys Rev Lett 51:1605CrossRefGoogle Scholar
  22. 22.
    Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Compos Sci Technol 63:1637CrossRefGoogle Scholar
  23. 23.
    Grujicic M, Cao G, Roy WN (2004) J Mater Sci 39:4441. doi: https://doi.org/10.1023/B:JMSC.0000034136.11779.96 CrossRefGoogle Scholar
  24. 24.
    Hu L, Hecht DS, Gruner G (2004) Nano Lett 4:2513CrossRefGoogle Scholar
  25. 25.
    Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Science 288:494CrossRefGoogle Scholar
  26. 26.
    Fagan JA, Becker ML, Chun J, Nie P, Hobbie EK (2008) Langmuir 24:13880CrossRefGoogle Scholar
  27. 27.
    Heller DA, Mayrhofer RM, Baik S, Grinkova YV, Usrey ML, Strano MS (2004) J Am Chem Soc 126:14567CrossRefGoogle Scholar
  28. 28.
    Hennrich F, Krupke R, Arnold K, Stutz JAR, Lebedkin S, Koch T, Schimmel T, Kappes MM (2007) J Phys Chem B 111:1932CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qinghui Zhang
    • 1
  • Pornnipa Vichchulada
    • 1
  • Meagan A. Cauble
    • 1
  • Marcus D. Lay
    • 1
    Email author
  1. 1.Department of Chemistry and Nanoscale Science and Engineering Center (NanoSEC)University of GeorgiaAthensUSA

Personalised recommendations