Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1633–1640 | Cite as

Preparation of silicon carbide fibers from the blend of solid and liquid polycarbosilanes

  • Ming Tang
  • Zhaoju Yu
  • Yuxi Yu
  • Litong Zhang
  • Lifu ChenEmail author
Article

Abstract

A highly branched liquid polycarbosilane (LPCS) was added into a solid polycarbosilane (PCS) to give a polymer blend. It was then melt-spun into precursor fibers, oxidation-cured in hot-air, and converted into ceramic fibers by pyrolysis under nitrogen. It was found that the addition of the LPCS resulted in a significant drop on the spinning temperature from 285 °C (without LPCS) to 225 °C (with 15% LPCS), while the spinning ability of the polymer blend was also markedly improved over the solid PCS. Furthermore, the LPCS enhanced the oxidation curing, reducing the curing temperature and hence the tendency for fiber partial melting and sticking. However, the strength of the silicon carbide fibers decreased owing to the presence of the LPCS. The effects of the LPCS addition and their mechanisms on the fiber processing and properties were studied using FTIR, NMR, GPC, XRD, SEM, and elemental analysis.

Keywords

Drawing Ratio Fiber Strength Oxidation Cure Precursor Fiber Ceramic Yield 

Notes

Acknowledgement

The project was supported by National Natural Science Foundation of China (No. 50472056, No. 50532010, and No. 50802079).

References

  1. 1.
    Yajima S, Hayashi J, Omori M (1975) Chem Lett 9:931CrossRefGoogle Scholar
  2. 2.
    Yajima S, Hayashi J, Omori M et al (1976) Nature 261:683CrossRefGoogle Scholar
  3. 3.
    Yajima S, Okamura K, Hayashi J et al (1976) J Am Ceram Soc 59:324CrossRefGoogle Scholar
  4. 4.
    Okamura K (1987) Composites 18:107CrossRefGoogle Scholar
  5. 5.
    Cooke TF (1991) J Am Ceram Soc 74:2959CrossRefGoogle Scholar
  6. 6.
    Johnson DW, Evans AG, Goettler RW (1998) Ceramic fibers and coatings: advanced materials for the twenty-first century. National Academy Press, Washington, DCGoogle Scholar
  7. 7.
    Le Coustumer P, Monthioux M, Oberlin A (1993) J Eur Ceram Soc 11:95CrossRefGoogle Scholar
  8. 8.
    Narisawa M, Idesaki A, Kitano S et al (1999) J Am Ceram Soc 82:1045CrossRefGoogle Scholar
  9. 9.
    Idesaki A, Narisawa M, Okamura K et al (2001) J Mater Sci 36:357. doi: https://doi.org/10.1023/A:1004864126085 CrossRefGoogle Scholar
  10. 10.
    Idesaki A, Narisawa M, Okamura K et al (2001) J Mater Sci 36:5565. doi: https://doi.org/10.1023/A:1012549228826 CrossRefGoogle Scholar
  11. 11.
    Whitmarsh CK, Interrante LV (1991) Organometallics 10:1336CrossRefGoogle Scholar
  12. 12.
    Suwardie H, Kalyon DM, Kovenklioglu S (1991) J Appl Polym Sci 42:1087. doi: https://doi.org/10.1002/app.1991.070420422 CrossRefGoogle Scholar
  13. 13.
    Narisawa M, Shimoda M, Okamura K et al (1995) Bull Chem Soc Jpn 68:1098. doi: https://doi.org/10.1246/bcsj.68.1098 CrossRefGoogle Scholar
  14. 14.
    Hasegawa Y, Okamura K (1986) J Mater Sci 21:321. doi: https://doi.org/10.1007/BF01144739 CrossRefGoogle Scholar
  15. 15.
    Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  16. 16.
    Yajima S, Hasegawa Y, Hayashi J et al (1978) J Mater Sci 13:2569. doi: https://doi.org/10.1007/BF02402743 Google Scholar
  17. 17.
    Cheng XZ, Xiao JY, Xie ZF (2004) J Mater Eng 1:29Google Scholar
  18. 18.
    Wang J, Feng CX, Song YC (1998) Acta Chim Sin 56:77Google Scholar
  19. 19.
    Hasegawa Y (1989) J Mater Sci 24:1177. doi: https://doi.org/10.1007/BF00553140 CrossRefGoogle Scholar
  20. 20.
    Ichikawa H, Teranishi H, Ishikawa T (1987) J Mater Sci Lett 6:420CrossRefGoogle Scholar
  21. 21.
    Narisawa M, Kitano S, Okamura K (1995) J Am Ceram Soc 78:3405CrossRefGoogle Scholar
  22. 22.
    Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15:720. doi: https://doi.org/10.1007/BF00551739 CrossRefGoogle Scholar
  23. 23.
    Laine RM (1993) Chem Mater 5:260CrossRefGoogle Scholar
  24. 24.
    Shimoo T, Sugimoto M, Okamura K (1990) J Ceram Soc Jpn 98:1324CrossRefGoogle Scholar
  25. 25.
    Johnson SM, Brittain RD, Lamoreaux RH et al (1988) J Am Ceram Soc 71:132Google Scholar
  26. 26.
    Bouillon E, Langlais F, Pailler R et al (1991) J Mater Sci 26:1333. doi: https://doi.org/10.1007/BF00544474 CrossRefGoogle Scholar
  27. 27.
    Shimoo T, Chen H, Okamura K (1992) J Ceram Soc Jpn 100:48CrossRefGoogle Scholar
  28. 28.
    Vahlas C, Rocabois P, Bernard C (1994) J Mater Sci 29:5839. doi: https://doi.org/10.1007/BF00366865 CrossRefGoogle Scholar
  29. 29.
    Vahlas C, Laanani F (1995) J Mater Sci Lett 14:1558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ming Tang
    • 1
    • 2
  • Zhaoju Yu
    • 2
  • Yuxi Yu
    • 2
  • Litong Zhang
    • 2
  • Lifu Chen
    • 2
    Email author
  1. 1.Department of Materials Science and Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Advanced Materials Laboratory, Department of Materials Science and Engineering, College of MaterialsXiamen UniversityXiamenChina

Personalised recommendations