Journal of Materials Science

, Volume 44, Issue 5, pp 1264–1274 | Cite as

Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding

  • M. Dourandish
  • A. SimchiEmail author


Recently, co-powder injection molding process (2C-PIM) has attained considerable interest to fabricate complex-shaped functional materials. The aim of this work is to study the sintering compatibility between nanocrystalline yttria-stabilized zirconia (3Y-TZP) and PIM grade 430L stainless steel (SS) powders, which is the utmost important step in the 2C-PIM process. To evaluate the mismatch strain development during the co-sintering, the isothermal and nonisothermal behaviors of the ceramic and metal powders were studied. Small bilayers of 3Y-TZP/430L were made by a powder metallurgy technique and the feasibility of simultaneous sintering and joining of the composite layer was examined. Electron probe micro-analyzer (EPMA) was used to study the joint interface. The shear strength of the bond was tested by a shear-punch instrument. It is shown that the amount of mismatch sintering shrinkage between the zirconia ceramic and SS powder during sintering can be as high as 9.7%. Meanwhile, sintering in vacuum induced lower mismatch strain compared to argon sintering. It is also shown that formation of a liquid phase by boron addition to the SS layer could assist bonding. The liquid phase accommodates the mismatch sintering shrinkage and ease materials transfer at the interface. EPMA analysis confirmed the interlayer diffusion of Zr, Fe, and Cr during sintering to form a ternary Zr–Fe–Cr oxide interface.


Zirconia Reaction Layer Composite Layer 430L Stainless Steel Liquid Phase Sinter 


  1. 1.
    Kim KT, Kim HG, Jang HM (1998) Int J Eng Sci 36:1295CrossRefGoogle Scholar
  2. 2.
    Correia RN, Emiliano JV (1998) J Mater Sci 33:215. doi: CrossRefGoogle Scholar
  3. 3.
    Mazaheri M, Simchi A, Golestani-Fard F (2008) J Eur Ceram Soc 28:2933CrossRefGoogle Scholar
  4. 4.
    Munoz MC, Gallego S, Beltran JI, Cerda J (2006) Surf Sci Rep 61:303CrossRefGoogle Scholar
  5. 5.
    Jadoon AK, Ralph B, Hornsby PR (2004) J Mater Proc Technol 152:257CrossRefGoogle Scholar
  6. 6.
    Singh M, Shpargel TP, Asthana R (2008) J Mater Sci 43:23. doi: CrossRefGoogle Scholar
  7. 7.
    Akselsen OM (1992) J Mater Sci 27:1989. doi: CrossRefGoogle Scholar
  8. 8.
    Wang Z, Qian J, Cao J, Wang S, Wen T (2007) J Alloys Compd 437:264CrossRefGoogle Scholar
  9. 9.
    Harach DJ, Vecchio KS (2001) Met Mater Trans A 32:1493CrossRefGoogle Scholar
  10. 10.
    Yeo JG, Jung YG, Choi SC (1998) J Eur Ceram Soc 18:1281CrossRefGoogle Scholar
  11. 11.
    Biswas K, Upadhyaya GS (1998) Mater Des 19:231CrossRefGoogle Scholar
  12. 12.
    Yun JW, Lombardo SJ (2008) J Am Ceram Soc 91:1553CrossRefGoogle Scholar
  13. 13.
    Larker R, Wei LY, Loberg B, Olsson M, Johansson S (1994) J Mater Sci 29:4404. doi: CrossRefGoogle Scholar
  14. 14.
    Zhang W, Xie J, Wang C (2004) Mater Sci Eng A 382:371CrossRefGoogle Scholar
  15. 15.
    Yen SK, Guo MJ, Zan HZ (2001) Biomaterials 22:125CrossRefGoogle Scholar
  16. 16.
    Hussain P, Isnin A (2001) J Mater Proc Technol 113:222CrossRefGoogle Scholar
  17. 17.
    Scheu C, Gao M, Oh SH, Dehm G, Klein S, Tomsia AP, Rühle M (2006) J Mater Sci 41:5161. doi: CrossRefGoogle Scholar
  18. 18.
    Li J, Xiao P (2004) J Eur Ceram Soc 24:2149CrossRefGoogle Scholar
  19. 19.
    Nemoto Y, Ueda K, Satou M, Hasegawa A, Katsunori K (1998) J Nucl Mater 258–263:1517CrossRefGoogle Scholar
  20. 20.
    Vila M, Martinez ML, Prieto C, Miranzo P, Osendi MI, Terry A, Vaughan G (2004) Powder Technol 148:60CrossRefGoogle Scholar
  21. 21.
    Yeo JG, Jung YG, Choi S-C (1998) Mater Lett 37:304CrossRefGoogle Scholar
  22. 22.
    Ozawa M, Kawagoe M, Suzuku S (2004) J Mater Sci 39:1337. doi: CrossRefGoogle Scholar
  23. 23.
    Li JQ, Zeng XR, Tang JN, Xiao P (2003) J Eur Ceram Soc 23:1847CrossRefGoogle Scholar
  24. 24.
    Muller AC, Herbstritt D, Ivers-Tiffe E (2002) Solid State Ion 152–153:537CrossRefGoogle Scholar
  25. 25.
    Li J, Xiao P (2001) J Mater Sci 36:1383. doi: CrossRefGoogle Scholar
  26. 26.
    Morsi K, Patel VV, Moon KS, Garay JE (2008) J Mater Sci 43:4050. doi: CrossRefGoogle Scholar
  27. 27.
    Vanmeensel K, Huang SG, Laptev A, Salehi SA, Swarnakar AK, Biest OV, Vleugels J (2008) J Mater Sci 43:6435. doi: CrossRefGoogle Scholar
  28. 28.
    Lee JG, Ma HA, Lee XL, Zheng YJ, Zuo GH, Jia X (2007) J Mater Sci 42:9460. doi: CrossRefGoogle Scholar
  29. 29.
    Bruck HA, Shabana YM, Xu B, Laskis JP (2007) J Mater Sci 42:7708. doi: CrossRefGoogle Scholar
  30. 30.
    Kodera Y, Toyofuku N, Yamasaki H, Ohyanagi M, Munir ZA (2008) J Mater Sci 43:6422. doi: CrossRefGoogle Scholar
  31. 31.
    Muroi M, Trotter G, McCormick PG, Kawahara M, Tokita M (2008) J Mater Sci 43:6376. doi: CrossRefGoogle Scholar
  32. 32.
    MacAskill IA, Bishop DP (2007) J Mater Sci 42:4149. doi: CrossRefGoogle Scholar
  33. 33.
    Ruh A, Dieckmann AM, Heldele R, Piotter V, Ruprecht R, Munzinger C, Fleischer J, Haußelt J (2008) Microsyst Technol 14:1805. doi: CrossRefGoogle Scholar
  34. 34.
    Stephenson DJ (2000) Ann CIRP 49/1:191CrossRefGoogle Scholar
  35. 35.
    Alcock JR, Logan PM, Stephenson DJ (1998) Surf Coat Technol 105:65CrossRefGoogle Scholar
  36. 36.
    Heaney DF, Suri P, German RM (2003) J Mater Sci 38:4869. doi: CrossRefGoogle Scholar
  37. 37.
    Imgrund P, Rota A, Simchi A (2008) J Mater Proc Technol 200:259CrossRefGoogle Scholar
  38. 38.
    Imgrund P, Rota A, Petzoldt F, Simchi A (2007) Int J Adv Manuf Tech 33:176CrossRefGoogle Scholar
  39. 39.
    Simchi A, Rota A, Imgrund P (2006) Mater Sci Eng A 424:282CrossRefGoogle Scholar
  40. 40.
    Simchi A (2006) Met Mater Trans A 37:2549CrossRefGoogle Scholar
  41. 41.
    Firozdour V, Simchi A, Kokabi AH (2007) J Mater Sci 43:55. doi: CrossRefGoogle Scholar
  42. 42.
    Dourandish M, Simchi A, Godlinski D (2008) Mater Sci Eng A 472:338CrossRefGoogle Scholar
  43. 43.
    Feng J, Qiu M, Fan Y, Xu N (2007) J Membrane Sci 305:20CrossRefGoogle Scholar
  44. 44.
    Baumann A, Moritz T, Lenk R (2007) Keram Z 59(5):346Google Scholar
  45. 45.
    Baumann AA, Moritz T, Lenk R (2007) Proceedings of European Powder Metallurgy Congress and Exhibition (EURO PM2007), vol 2. Toulouse, France, October 2007, p 189Google Scholar
  46. 46.
    Menon M, Chen IW (1999) J Am Ceram Soc 82:3422CrossRefGoogle Scholar
  47. 47.
    Cai PZ, Green DJ, Messing GL (1997) J Am Ceram Soc 80:1929CrossRefGoogle Scholar
  48. 48.
    Cai PZ, Green DJ, Messing GL (1997) J Am Ceram Soc 80:1940CrossRefGoogle Scholar
  49. 49.
    Liao CH, Jean JH, Hung YY (2008) J Am Ceram Soc 91:648CrossRefGoogle Scholar
  50. 50.
    Chang JC, Jean JH (2005) J Am Ceram Soc 88:1165CrossRefGoogle Scholar
  51. 51.
    Boonyongmaneerat Y, Schuh CA (2006) Met Mater Trans 37A:1435CrossRefGoogle Scholar
  52. 52.
    Delannay F, Pardoen D, Colin C (2005) Acta Mater 53:1655CrossRefGoogle Scholar
  53. 53.
    Kazior J, Nykiel M, Pieczonka T, Marcu Puscas T, Molinari A (2004) J Mater Proc Technol 157–158:712CrossRefGoogle Scholar
  54. 54.
    Özbek I, Konduk BA, Bindal C, Ucisik AH (2002) Vacuum 65:521CrossRefGoogle Scholar
  55. 55.
    Tonnes C (1992) Met Powder Rep 47:49CrossRefGoogle Scholar
  56. 56.
    Suri P, Heaney DF, German RM (2003) J Mater Sci 38:4875. doi: CrossRefGoogle Scholar
  57. 57.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company Inc, MassachusettsGoogle Scholar
  58. 58.
    Theunissen GSAM, Winnubst AJA, Burggraaf AJ (1993) J Eur Ceram Soc 11:315CrossRefGoogle Scholar
  59. 59.
    Sobczak N, Sobczak J, Nowak R, Kudyba A, Darlak P, Mikulowski B, Wojiechowski A (2005) J Mater Sci 40:2547. doi: CrossRefGoogle Scholar
  60. 60.
    Simchi A, Petzoldt F, Hartwig T (2005) Proceedings of Euro PM2005 Conference and Congress, vol 2. EPMA, Shrewsbury, UK, p 357Google Scholar
  61. 61.
    Sarkar K, Sund SE, Bose D, Yamanis J (1990) Math Comput Model 14:842CrossRefGoogle Scholar
  62. 62.
    Mazaheri M (2007) MS Thesis. Sharif University of Technology, TehranGoogle Scholar
  63. 63.
    Park JW, Mendez PF, Eagar TW (2005) Scr Mater 53:857CrossRefGoogle Scholar
  64. 64.
    Darby RJ, Kumar RV (2008) J Mater Sci 43:6567. doi: CrossRefGoogle Scholar
  65. 65.
    Qin CD, Derby B (1993) J Mater Sci 28:4366. doi: CrossRefGoogle Scholar
  66. 66.
    Durov AV, Naidich YV, Kostyuk BD (2005) J Mater Sci 40:2173. doi: CrossRefGoogle Scholar
  67. 67.
    Teng LD, Wang FM, Lia WC (2000) Mater Sci Eng A293:130CrossRefGoogle Scholar
  68. 68.
    Ravi BG, Chaim R (2002) J Mater Sci 37:813. doi: CrossRefGoogle Scholar
  69. 69.
    Nikolopoulos P, Ondracek G, Sotiropoulou D (1989) Ceram Int 15:201CrossRefGoogle Scholar
  70. 70.
    Zhu J, Kamiya A, Yamada T, Shi W, Naganuma K, Mukai K (2002) Mat Sci Eng A327:117CrossRefGoogle Scholar
  71. 71.
    Nakashima K, Matsumoto H, Mori K (2000) Acta Mater 48:4677CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  2. 2.Institute for Nanoscience and Nanotechnology (INST)Sharif University of TechnologyTehranIran

Personalised recommendations