Journal of Materials Science

, Volume 44, Issue 5, pp 1258–1263 | Cite as

Synthesis of hydroxyapatite nanorods assisted by Pluronics

  • Yanbao LiEmail author
  • Dongxu Li
  • Zhongzi XuEmail author


Pluronics F127, P123, and F87 were employed to synthesize hydroxyapatite nanorods for biomedical applications. The calcium phosphate precipitates were characterized by XRD, TEM/EDS, FTIR, and TGA. Pluronics affected the phase evolution of the calcium phosphate precursors in the mother solution at room temperature. The hydroxyapatite nanorods with a diameter of 20 nm, a length of 100 nm, and a Ca/P ratio of 1.70 were obtained after the precursors were heated at 140 °C for 3 h in a Teflon-lined autoclave. There is about 2 wt% Pluronic on the surface of hydroxyapatite. The hydroxyapatite with a small amount of organics on the surface can be potentially used as fillers in biomedical composites with excellent biological and mechanical properties.


Apatite Calcium Phosphate Pluronic Hydrothermal Treatment Amorphous Calcium Phosphate 



This work was supported by Nature Science Foundation of China (No. 50802042), Nature Science Foundation of Jiangsu province (No. BK2008379), and Science and Technology Developing Foundation of Nanjing (No. ZKX07016).


  1. 1.
    Li SH, de Wijn JR, Li JP, Layrolle P, de Groot K (2003) Tissue Eng 9:535CrossRefGoogle Scholar
  2. 2.
    Hench LL (1998) J Am Ceram Soc 81:1705CrossRefGoogle Scholar
  3. 3.
    Li DX, Geng YL, Li YB (2008) Chin J Inorg Chem 24:83Google Scholar
  4. 4.
    Li YB, Wijn J, Klein CPAT, Meer S, Groot K (1994) J Mater Sci Mater Med 5:252CrossRefGoogle Scholar
  5. 5.
    Rao RR, Roopa HN, Kannan TS (1997) J Mater Sci Mater Med 8:511CrossRefGoogle Scholar
  6. 6.
    Li YB, Weng WJ, Li DX (2008) Int J Appl Ceram Tech 5:442CrossRefGoogle Scholar
  7. 7.
    Cao JM, Feng J, Deng SG, Chang X, Wang J, Liu JS, Lu P, Lu HX, Zheng MB, Zhang F, Tao J (2005) J Mater Sci 40:6311. doi: CrossRefGoogle Scholar
  8. 8.
    Cai S, Wang YW, Hong L, Peng ZZ, Yao KD (2005) Ceram Int 31:135CrossRefGoogle Scholar
  9. 9.
    Kim W, Saito F (2001) Ultrason Sonochem 8:85CrossRefGoogle Scholar
  10. 10.
    Darr JA, Guo ZX, Raman V, Bououdina M, Rehman IU (2004) Chem Commun 696Google Scholar
  11. 11.
    Iqbal M, Chung YI, Tae G (2007) J Mater Chem 17:335CrossRefGoogle Scholar
  12. 12.
    Yang SW, Gao L (2005) Chem Lett 34:964CrossRefGoogle Scholar
  13. 13.
    Yang CS, Awschalom DD, Stucky GD (2002) Chem Mater 14:1277CrossRefGoogle Scholar
  14. 14.
    Zhou AJJ, Peel SAF, Clokie CML (2007) J Craniofac Surg 18:1264CrossRefGoogle Scholar
  15. 15.
    Li YB, Weng WJ, Cheng K, Du PY, Shen G, Han GR (2004) Mater Sci Technol 20:1075CrossRefGoogle Scholar
  16. 16.
    Li YB, Wiliana T, Tam KC (2007) Mater Res Bull 42:820CrossRefGoogle Scholar
  17. 17.
    Koutsopoulos S (2002) J Biomed Mater Res 62:600CrossRefGoogle Scholar
  18. 18.
    Addadi L, Raz S, Weiner S (2003) Adv Mater 15:959CrossRefGoogle Scholar
  19. 19.
    Chen HF, Clarkson BH, Sun K, Mansfield JF (2005) J Colloid Interface Sci 288:97CrossRefGoogle Scholar
  20. 20.
    Rhee SH, Tanaka J (2002) J Mater Sci Mater Med 13:597CrossRefGoogle Scholar
  21. 21.
    Gibson IR, Bonfield W (2002) J Biomed Mater Res 59:697CrossRefGoogle Scholar
  22. 22.
    Wang M (2003) Biomaterials 24:2133CrossRefGoogle Scholar
  23. 23.
    Wang M, Bonfield W (2001) Biomaterials 22:1311CrossRefGoogle Scholar
  24. 24.
    Li YB, Weng WJ (2008) J Mater Sci Mater Med 19:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and EngineeringNanjing University of TechnologyNanjingChina
  2. 2.Jiangsu Provincial Key Laboratory of Biomaterials and Biodevices, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations