Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1192–1197 | Cite as

Surface-type multifunctional sensor based on 5,10,15,20-tetrakis(4′-isopropylphenyl) porphyrin

  • Muhammad Saleem
  • Muhammad H. SayyadEmail author
  • Khasan S. Karimov
  • Muhammad Yaseen
  • Mukhtar Ali
Article

Abstract

In this study, an organic semiconductor 5,10,15,20-tetrakis(4′-isopropylphenyl) porphyrin (TIPP) was synthesized and investigated as an active material in surface-type multifunctional sensor. As electrodes, 100 nm thick Ag films were deposited on 25 mm × 25 mm glass substrate with 40 μm gap between them. Thin film of TIPP of area 15 mm × 15 mm was thermally sublimed to cover the gap between the silver electrodes. Thickness of TIPP film was 100 nm. A change in electrical resistance and capacitance of the fabricated device was observed with the increase in relative humidity (RH), temperature, and illumination. Hysteresis, response, and recovery times were investigated over a wide range of RH (0–94%). Activation energy of the TIPP was estimated. An equivalent circuit of the Ag/TIPP/Ag humidity, temperature, and illumination sensor was developed. Humidity, temperature, illumination dependent capacitive, and resistive properties of this sensor make it promising for use in a humidity, temperature, and lux multi-meters.

Keywords

Porphyrin Organic Semiconductor Humidity Sensor Capacitive Sensor Copper Phthalocyanine 

Notes

Acknowledgements

Authors wish to acknowledge GIK Institute of Engineering Sciences and Technology for the support extended to this study. Two of us, Muhammad Saleem and Muhammad Yaseen, are pleased to acknowledge Higher Education Commission of Pakistan for the fellowships.

References

  1. 1.
    Saleem M, Sayyad MH, Karimov KH, Ahmad Z, Shah M, Yaseen M, Khokhar I, Ali M (2008) JOAM 10:1468Google Scholar
  2. 2.
    Lee CW, Rhee HW, Gong MS (2001) Sens Actuators B 73:124CrossRefGoogle Scholar
  3. 3.
    Moiz SA, Ahmed MM, Karimov KS (2005) Jpn J Appl Phys 44:1199CrossRefGoogle Scholar
  4. 4.
    Harsanyi G (2000) Sens Rev 20:98CrossRefGoogle Scholar
  5. 5.
    Agostinelli T, Caironi M, Natali D, Sampietro M, Biagioni P, Finazzi M, Duό L (2007) J Appl Phys 101:114504CrossRefGoogle Scholar
  6. 6.
    Karimov KS, Qazi I, Khan TA, Draper PH, Khalid FA, Tahir MM (2008) Environ Monit Assess 141:323CrossRefGoogle Scholar
  7. 7.
    Ahmad Z, Sayyad MH, Saleem M, Karimov KS, Shah M (2008) Physica E. doi: https://doi.org/10.1016/j.physe.2008.05.018 CrossRefGoogle Scholar
  8. 8.
    Karimov KS, Akhmedov K, Qazi I, Khan TA (2007) JOAM 9:2867Google Scholar
  9. 9.
    Murakami T, Kawashima N, Miyasaka T (2005) Chem Commun 3346Google Scholar
  10. 10.
    Niranjan RS, Sathaye SD, Mulla IS (2001) Sens Actuators B 81:64CrossRefGoogle Scholar
  11. 11.
    Bearzotti A, Fratoddi I, Palummo L, Petrocco S, Furlani A, Lo-Sterzo C, Russo MV (2001) Sens Actuators B 76:316CrossRefGoogle Scholar
  12. 12.
    Sakai Y, Sadaoka Y, Matsuguchi M (1996) Sens Actuators B 35–36:85CrossRefGoogle Scholar
  13. 13.
    Su P-G, Wang C-P (2008) Sens Actuators B 129:538CrossRefGoogle Scholar
  14. 14.
    Arshak K, Twomey KT (2002) Sensors 2:205CrossRefGoogle Scholar
  15. 15.
    Andreasson MH, Mårtensson J, Andersson TG (2008) Curr Appl Phys 8:163CrossRefGoogle Scholar
  16. 16.
    Kim H-S, Kim C-H, Ha C-S, Lee J-K (2001) Synth Met 117:289CrossRefGoogle Scholar
  17. 17.
    Balanay MP, Dipaling CVP, Lee SH, Kim DH, Lee KH (2007) Sol Energy Mater Sol Cells 91:1775CrossRefGoogle Scholar
  18. 18.
    Natalea CD, Salimbenia D, Paolesseb R, Macagnanoa A, D’Amicoa A (2000) Sens Actuators B 65:220CrossRefGoogle Scholar
  19. 19.
    Alder AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L (1967) J Org Chem 32:476Google Scholar
  20. 20.
    Dehghani H, Babaahmadi M (2008) Polyhedron 27:2739CrossRefGoogle Scholar
  21. 21.
    Simonis U, Walker FA, Lee PL, Hanquet BJ, Meyerhoff DJ, Scheidt WR (1987) J Am Chem Soc 109:2659CrossRefGoogle Scholar
  22. 22.
    Rittersma ZM (2002) Sens Actuators A 96:196CrossRefGoogle Scholar
  23. 23.
    Bjorkqvist M, Salonen J, Paski J, Laine E (2004) Sens Actuators A 112:244CrossRefGoogle Scholar
  24. 24.
    Gutman F, Lyons LE (1980) Organic semiconductors. Robert E. Kriege Publishing Company, MalabarGoogle Scholar
  25. 25.
    Kargin VA (ed) (1968) Organic semiconductors. Nauka, MoscowGoogle Scholar
  26. 26.
    Savenije TJ, Goossens A (2001) Phys Rev B 64:115323CrossRefGoogle Scholar
  27. 27.
    Wangchang G, Wang R, Li X, Zou Y, Zang T, Tu J, He Y, Li N (2007) Sens Actuators B 127:323CrossRefGoogle Scholar
  28. 28.
    Iwamoto M, Manaka T (2005) In: Proceedings of the international symposium on super-functionality organic devices, IPAP conference series, Chiba, Japan, vol 6, p 63Google Scholar
  29. 29.
    Amy F, Chan C, Kahn A (2005) Org Electron 6:85CrossRefGoogle Scholar
  30. 30.
    Omar MA (2002) Elementary solid state physics: principles and applications. Pearson Education Pte Ltd, SingaporeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Muhammad Saleem
    • 1
  • Muhammad H. Sayyad
    • 1
    Email author
  • Khasan S. Karimov
    • 1
    • 2
  • Muhammad Yaseen
    • 3
  • Mukhtar Ali
    • 4
  1. 1.Faculty of Engineering Sciences (FES)Ghulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiPakistan
  2. 2.Physical Technical Institute of Academy of SciencesDushanbeTajikistan
  3. 3.Institute of ChemistryUniversity of the PunjabLahorePakistan
  4. 4.Government College of ScienceLahorePakistan

Personalised recommendations