Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1613–1621 | Cite as

Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings

  • Kun Xu
  • Shuxue Zhou
  • Limin Wu
Article

Abstract

Highly crystalline and dispersible zirconia nanoparticles, ex situ synthesized from a solvothermal reaction of zirconium(IV) isopropoxide isopropanol complex in benzyl alcohol, were functionalized with 3-(trimethoxysilyl)propyl methacrylate and blended with UV-curable urethane-acrylate formulations to fabricate poly(urethane-acrylate)/zirconia (PUA/ZrO2) nanocomposite coatings. A critical ZrO2 concentration of 20 wt% was observed for the evolutions of both the structure and properties of the nanocomposites as a function of ZrO2 content. Below the critical concentration, completely transparent nanocomposite film was obtained and the nanocomposites exhibited increasing final carbon–carbon double bond conversion, refractive index, hardness, elastic modulus, and thermal stability as ZrO2 content increased. However, serious agglomeration of ZrO2 nanoparticles occurred at 25 wt% of ZrO2, which decreased final conversion, transparency and hardness, and thermal stability of the nanocomposite film. These results clearly reveal that the performance of UV-curable nanocomposites is strongly dependent on the dispersion of nanoparticles.

Keywords

Benzyl Alcohol Nanocomposite Film Nanocomposite Coating ZrO2 Nanoparticles ZrO2 Content 

Notes

Acknowledgements

We are grateful for the financial support from the New Century Excellent Talent Foundation of the Ministry of Education of China (NCET-07-0210), National Nature Science Foundation (No. 50703005) of China and Shanghai Leading Academic Discipline Project (No. B113).

References

  1. 1.
    Balazs AC, Emrick T, Russell TP (2006) Science 314:1107. doi: https://doi.org/10.1126/science.1130557 CrossRefGoogle Scholar
  2. 2.
    Sangermano M, Priola A, Kortaberria G, Jimeno A, Garcia I, Mondragon I, Rizza G (2007) Macromol Mater Eng 292:956. doi: https://doi.org/10.1002/mame.200700093 CrossRefGoogle Scholar
  3. 3.
    Okada A, Usuki A (2006) Macromol Mater Eng 291(12):1449. doi: https://doi.org/10.1002/mame.200600260 CrossRefGoogle Scholar
  4. 4.
    Zhou SX, Wu LM, Shen WD, Gu GX (2004) J Mater Sci 39:1593. doi: https://doi.org/10.1023/B:JMSC.0000016157.19241.57 CrossRefGoogle Scholar
  5. 5.
    Zhou SX, Wu LM, Sun J, Shen WD (2002) Prog Org Coat 45:33. doi: https://doi.org/10.1016/s0300-9440(02)00085-1 CrossRefGoogle Scholar
  6. 6.
    Bauer F, Sauerland V, Gläsel HJ, Erns HT, Findeisen M, Hartmann E, Langguth H, Marquardt B, Mehnert R (2002) Macromol Mater Eng 287:546CrossRefGoogle Scholar
  7. 7.
    Allen NS, Edge M, Ortega A, Sandoval G, Liauw CM, Verran J, Stratton J, McIntyre RB (2004) Polym Degrad Stabil 85:927. doi: https://doi.org/10.1016/j.polymdegradstab.2003.09.024 CrossRefGoogle Scholar
  8. 8.
    Brickweg LJ, Floryancic BR, Sapper ED, Fernando RH (2007) J Coat Tech 4:107. doi: https://doi.org/10.1007/s11998-007-9002-7 CrossRefGoogle Scholar
  9. 9.
    Xu T, Xie CS (2003) Prog Org Coat 46:297. doi: https://doi.org/10.1016/s0300-9440(03)00016-x CrossRefGoogle Scholar
  10. 10.
    Yin YJ, Zhou SX, Gu GX, Wu LM (2007) J Mater Sci 42:5959. doi: https://doi.org/10.1007/s10853-006-1133-1 CrossRefGoogle Scholar
  11. 11.
    Zhou HW, Ma J, Li ZC, Chen CH (2005) Chem J Chin Univ 26:1582. doi: cnki:issn:0251-0790.02005-08-049Google Scholar
  12. 12.
    Lee S, Shin HJ, Yoon SM, Yi DK, Choi JY, Paik U (2008) J Mater Chem 18:1751. doi: https://doi.org/10.1039/b715338d CrossRefGoogle Scholar
  13. 13.
    Garnweitner G, Goldenberg LM, Sakhno OV, Antonietti M, Niederberger M, Stumpe J (2007) Small 3:1626. doi: https://doi.org/10.1002/smll.200700075 CrossRefGoogle Scholar
  14. 14.
    Zhou SX, Garnweitner G, Niederberge M, Antonietti M (2007) Langmuir 23:9178. doi: https://doi.org/10.1021/la7000837u CrossRefGoogle Scholar
  15. 15.
    Zhou SX, Wu LM (2008) Macromol Chem Phys 209(11):1170. doi: https://doi.org/10.1002/macp.200800090 CrossRefGoogle Scholar
  16. 16.
    Garnweitner G, Niederberger M (2006) J Am Ceram Soc 89:1801. doi: https://doi.org/10.1111/j.1551-2916.2006.01005.x CrossRefGoogle Scholar
  17. 17.
    Luo KQ, Zhou SX, Wu LM, Gu GX (2008) Langmuir 24(20):11497. doi: https://doi.org/10.1021/ia801943n CrossRefGoogle Scholar
  18. 18.
    Li FS, Zhou SX, You B, Wu LM (2006) J Appl Polym Sci 99(4):1429. doi: https://doi.org/10.1002/app.22629 CrossRefGoogle Scholar
  19. 19.
    Kwame OA, Guymon CA (2008) Polymer 49(11):2636. doi: https://doi.org/10.1016/j.polymer.2008.03.045 CrossRefGoogle Scholar
  20. 20.
    Cho JD, Ju HT, Hong JW (2005) J Polym Sci Part A Polym Chem 43:658. doi: https://doi.org/10.1002/pola.20529 CrossRefGoogle Scholar
  21. 21.
    Sangermano M, Voit B, Sordo F, Eichhorn KJ, Rizza G (2008) Polymer 49(8):2018. doi: https://doi.org/10.1016/j.polymer.2008.03.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and Advanced Coatings Research Center of China Educational MinistryFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations