Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1594–1599 | Cite as

Annealing effect on the structural, optical, and electrical properties of CuAlO2 films deposited by magnetron sputtering

  • W. LanEmail author
  • W. L. Cao
  • M. Zhang
  • X. Q. Liu
  • Y. Y. Wang
  • E. Q. Xie
  • H. Yan
Article

Abstract

We studied the annealing effect on the structural, optical, and electrical properties of sputtered CuAlO2 films. It is found that the crystallinity of CuAlO2 films is improved with increasing the annealing temperature in N2 ambient, and the film annealed at 900 °C presents the excellent preferred (001) orientation in X-ray diffraction patterns as well as Raman scattering signals, A1g and Eg. The optical absorption edge of the annealed films is observed extremely complex. Four optical bandgaps estimated are distributed in the following energy regions: ~3.00, ~3.15, ~3.50, and ~3.75 eV, which might originate from different direct transitions in CuAlO2 energy band, respectively. For the annealed CuAlO2 films, the resistivity decreases three orders of magnitude, which is attributed to the contribution of intrinsic defects, Cu vacancy and interstitial oxygen.

Keywords

Quartz Substrate Annealed Film CuAlO2 Interstitial Oxygen Direct Bandgap 

Notes

Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (No. 50802037), the Excellent Persons in Science and Engineering of Beijing (20061D0501500199), and the Youth Teacher Sustentation Plan of School of Physical Science and Technology of Lanzhou University (No. WL200705).

References

  1. 1.
    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) Nature 389:939CrossRefGoogle Scholar
  2. 2.
    Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H, Hamada N (2000) J Appl Phys 88:4159CrossRefGoogle Scholar
  3. 3.
    Gong H, Wang Y, Luo Y (2000) Appl Phys Lett 76:3959CrossRefGoogle Scholar
  4. 4.
    Banerjee AN, Chattopadhyay KK (2005) J Appl Phys 97:084308CrossRefGoogle Scholar
  5. 5.
    Ong CH, Gong H (2003) Thin Solid Films 445:299CrossRefGoogle Scholar
  6. 6.
    Banerjee AN, Kundoo S, Chattopadhyay KK (2003) Thin Solid Films 440:5CrossRefGoogle Scholar
  7. 7.
    Tonooka K, Shimokawa K, Nishimura O (2002) Thin Solid Films 411:129CrossRefGoogle Scholar
  8. 8.
    Bouzidi C, Bouzouita H, Timoumi A, Rezig B (2005) Mater Sci Eng B 118:259CrossRefGoogle Scholar
  9. 9.
    Lan W, Zhang M, Dong GB, Dong PM, Wang YY, Yan H (2007) Mater Sci Eng B 139:155CrossRefGoogle Scholar
  10. 10.
    Ishiguro T, Ishizawa N, Mizutani N, Kato M, Tanaka K, Marumo F (1983) Acta Crystallogr, B: Struct Sci 39:564. Calculated from ICSD using POWD-12 ++, (1997)CrossRefGoogle Scholar
  11. 11.
    Lambert JC, Eysel W (1980) Mineralogical-Petrograph. Institute, Universitat Heidelberg, ICDD Grant-in-Aid, GermanyGoogle Scholar
  12. 12.
    Tunell G, Posnjak E, Ksanda CJ, Kristallogr Z (1935) Kristallgeom Kristallphys Kristallchem 90:120. Calculated from ICSD using POWD-12 ++, (1997)Google Scholar
  13. 13.
    Pellicer-Porres J, Martínez-García D, Segura A, Rodríguez-Hernández P, Muñoz A, Chervin JC, Garro N, Kim D (2006) Phys Rev B 74:184301CrossRefGoogle Scholar
  14. 14.
    Ingram BJ, Mason TO, Asahi R, Park KT, Freeman AJ (2001) Phys Rev B 64:155114CrossRefGoogle Scholar
  15. 15.
    Nie X, Wei SH, Zhang SB (2002) Phys Rev Lett 88:066405CrossRefGoogle Scholar
  16. 16.
    Jayalakshmi V, Murugan R, Palanivel B (2005) J Alloys Compd 388:19CrossRefGoogle Scholar
  17. 17.
    Pellicer-Porres J, Segura A, Gilliland AS, Muñoz A, Rodríguez-Hernández P, Kim D, Lee MS, Kim TY (2006) Appl Phys Lett 88:181904CrossRefGoogle Scholar
  18. 18.
    Benko FA, Koffyberg FP (1984) J Phys Chem Solids 45:57CrossRefGoogle Scholar
  19. 19.
    Kawazoe H, Yanagi H, Ueda K, Hosono H (2000) Mater Res Bull 8:28CrossRefGoogle Scholar
  20. 20.
    Cai JL, Gong H (2005) J Appl Phys 98:033707CrossRefGoogle Scholar
  21. 21.
    Yu RS, Liang SC, Lu CJ, Tasi DC, Shieu FS (2007) Appl Phys Lett 90:191117CrossRefGoogle Scholar
  22. 22.
    Zhang SB, Wei SH, Zunger A (2001) Phys Rev B 63:075205CrossRefGoogle Scholar
  23. 23.
    Banerjee AN, Maity R, Ghosh PK, Chattopadhyay KK (2005) Thin Solid Films 474:261CrossRefGoogle Scholar
  24. 24.
    Katayama-Yoshida H, Koyanagi T, Funashima H, Harima H, Yanase A (2003) Solid State Commun 126:135CrossRefGoogle Scholar
  25. 25.
    Katayama-Yoshida H, Sato K, Kizaki H, Funashima H, Hamada I, Fukushima T, Dinh VA, Toyoda M (2007) Appl Phys A 89:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. Lan
    • 1
    • 2
    Email author
  • W. L. Cao
    • 1
  • M. Zhang
    • 2
  • X. Q. Liu
    • 1
  • Y. Y. Wang
    • 1
  • E. Q. Xie
    • 1
  • H. Yan
    • 2
  1. 1.Department of Physics, School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations