Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 1016–1023 | Cite as

The influence of combustion synthesis conditions on the α-Al2O3 powder preparation

  • Robert Ianoş
  • Ioan Lazău
  • Cornelia Păcurariu
Article

Abstract

Fuel type and fuel/aluminium nitrate molar ratio proved to be of great importance during the preparation of α-Al2O3 powders. A stoichiometric amount of urea (U) enabled the formation of α-Al2O3 with a surface area of 24 m2/g directly from the combustion reaction. Monoethanolamine, triethylenetetramine, trishydroxymethylaminomethane, and triethanolamine yield amorphous powders. This behaviour was explained by the reaction mechanism, which requires the simultaneous decomposition of metal nitrate and fuel, as shown by thermal analysis. The use of 50% of the stoichiometric amount of U was unable to trigger a combustion reaction. The resulting powder was amorphous and had a surface area of 424 m2/g. A parabolic correlation between the surface area of combustion-synthesized powder and the U/aluminium nitrate molar ratio was found. Due to U consumption during the hydrolysis side-reaction, 50% of U excess above the stoichiometric ratio is required in order to maximize the exothermic effect of the combustion reaction. The use of U excess higher than 150% of the stoichiometric ratio not only increases the surface area of the powder, but also changes the phase composition: as the U excess increases the proportion of α-Al2O3 decreases and the amount of γ-Al2O3 increases.

Keywords

Combustion Temperature Amorphous Powder TETA Combustion Reaction THAM 

References

  1. 1.
    Volceanov E, Volceanov A, Stoleriu Ş (2007) J Eur Ceram Soc 27:759CrossRefGoogle Scholar
  2. 2.
    Menecier S, Jarrige J, Labbe JC et al (2007) J Eur Ceram Soc 27:851CrossRefGoogle Scholar
  3. 3.
    Gitknecht D, Chevalier J, Garnier V et al (2007) J Eur Ceram Soc 27:1547CrossRefGoogle Scholar
  4. 4.
    Ul’yanova TM, Titova LV, Krut’ko NP (2002) Glass Ceram 59:279CrossRefGoogle Scholar
  5. 5.
    Badmos AY, Ivey DG (2001) J Mater Sci 36:4995. doi: https://doi.org/10.1023/A:1011885631876 CrossRefGoogle Scholar
  6. 6.
    Kiiko VS, Makurin YN, Safronov AA et al (2003) Refract Ind Ceram 44:94CrossRefGoogle Scholar
  7. 7.
    Temuujin J, Jadambaa T, Mackenzie KJD et al (2000) Bull Mater Sci 23:301CrossRefGoogle Scholar
  8. 8.
    Martin ST, Yu J, Han J et al (2000) J Aerosol Sci 31:1283CrossRefGoogle Scholar
  9. 9.
    Hernandez T, Bautista MC (2005) J Eur Ceram Soc 25:663CrossRefGoogle Scholar
  10. 10.
    Janbey A, Pati RK, Tahir S et al (2001) J Eur Ceram Soc 21:2285CrossRefGoogle Scholar
  11. 11.
    Patil KC, Aruna ST, Mimani T (2002) Curr Opin Solid State Mater Sci 6:507CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Ianoş R, Lazău I, Păcurariu C et al (2008) Eur J Inorg Chem 2008:931CrossRefGoogle Scholar
  14. 14.
    Bhaduri S, Zhou E, Bhaduri SB (1996) Nanostruct Mater 7:487CrossRefGoogle Scholar
  15. 15.
    Mimani T (2000) Resonance 5:50CrossRefGoogle Scholar
  16. 16.
    Mimani T, Patil KC (2001) Mater Phys Mech 4:134Google Scholar
  17. 17.
    Chen CC, Huang KT (2005) J Mater Res 20:424CrossRefGoogle Scholar
  18. 18.
    Ozuna O, Hirata GA, McKittrick J (2004) J Phys Condens Matter 16:2585CrossRefGoogle Scholar
  19. 19.
    Toniolo JC, Lima MD, Takimi AS et al (2005) Mater Res Bull 40:561CrossRefGoogle Scholar
  20. 20.
    Peng T, Liu X, Dai K et al (2006) Mater Res Bull 41:1683Google Scholar
  21. 21.
    Pathak LC, Singh TB, Das S et al (2002) Mater Lett 57:380CrossRefGoogle Scholar
  22. 22.
    Li J, Wu Y, Pan Y et al (2007) Ceram Int 33:361CrossRefGoogle Scholar
  23. 23.
    Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Pacewska B, Keshr M (2002) Thermochim Acta 385:73CrossRefGoogle Scholar
  25. 25.
    Kakade MB, Ramanathan S, Ravindran PV (2003) J Alloys Compd 350:123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert Ianoş
    • 1
  • Ioan Lazău
    • 1
  • Cornelia Păcurariu
    • 1
  1. 1.Faculty of Industrial Chemistry and Environmental Engineering“Politehnica” University of TimişoaraTimisoaraRomania

Personalised recommendations