Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 970–975 | Cite as

UV curing behavior of a highly branched polycarbosilane

  • Houbu Li
  • Litong Zhang
  • Laifei Cheng
  • Haitao Kang
  • Yiguang WangEmail author
Article

Abstract

The UV curing behavior of a highly branched polycarbosilane (HBPCS) was studied by differential scanning photo calorimeter (DPC) measurements. 2-Hydroxy-2-Methyl-Phenyl-Propane-1-one (Photocure-1173) was selected as photoinitiator. In order to accelerate the curing reaction rate of polycarbosilane, acrylic reactive diluent tripropane glycol diacrylate (TPGDA) was also added to the polymer system. The effect of TPGDA content, photoinitiator concentration, temperature, light intensity, and the curing atmosphere was investigated. The results indicated that the TPGDA greatly enhanced the reaction rate of the HBPCS system. The TPGDA content, photoinitiator concentration, temperature, and light intensity had their own optimal values to get the maximum ultimate conversion percentage and the reaction rate. The oxygen atmosphere helped to increase the final conversion percentage though it could retard the reaction rate.

Keywords

Conversion Percentage Maximum Reaction Rate Acrylic Group Measured Heat Flow Initial Conversion Rate 

References

  1. 1.
    Yajima S, Hasegawa Y, Okamura K et al (1978) Nature 273:525CrossRefGoogle Scholar
  2. 2.
    Riedel R, Passing G, SchoÈnfelder H et al (1992) Nature 355:714CrossRefGoogle Scholar
  3. 3.
    Li HB, Zhang LT, Cheng LF et al (2008) J Mater Sci 43:2806. doi: https://doi.org/10.1007/s10853-008-2539-8 CrossRefGoogle Scholar
  4. 4.
    Riedel R, Kienzle A, Dressler W et al (1996) Nature 382:796CrossRefGoogle Scholar
  5. 5.
    Wang Y, Fan Y, Zhang L et al (2005) J Am Ceram Soc 88:3075CrossRefGoogle Scholar
  6. 6.
    Wang Y, Fei W, An L (2006) J Am Ceram Soc 89:1079CrossRefGoogle Scholar
  7. 7.
    Wang Y, Fan Y, Zhang L et al (2006) Scripta Mater 55:295CrossRefGoogle Scholar
  8. 8.
    Wang Y, Fei W, Fan Y et al (2006) J Mater Res 21:1625CrossRefGoogle Scholar
  9. 9.
    Ramakrishnan PA, Wang YT, Balzar D et al (2001) Appl Phys Lett 78:3076CrossRefGoogle Scholar
  10. 10.
    Liew L, Liu YP, Luo RL et al (2002) Sens Actuators A 95:120CrossRefGoogle Scholar
  11. 11.
    Liew L, Saravanan RA, Victor MB et al (2003) Sens Actuators A 103:171CrossRefGoogle Scholar
  12. 12.
    Dzunuzovic E, Tasic S, Bozic B et al (2005) Prog Org Coat 52:136CrossRefGoogle Scholar
  13. 13.
    Xia JR, Xu YL, Lin JH et al (2008) Prog Org Coat 61:7CrossRefGoogle Scholar
  14. 14.
    Nicolau DV, Taguchi T, Taniguchi H et al (1999) Colloids Surf A 155:51CrossRefGoogle Scholar
  15. 15.
    Tey JN, Soutar AM, Mhaisalkar SG et al (2006) Thin Solid Films 504:384CrossRefGoogle Scholar
  16. 16.
    Fogelström L, Antoni P, Malmström E et al (2006) Prog Org Coat 55:284CrossRefGoogle Scholar
  17. 17.
    Granat P, Pudas M, Hormi O et al (2004) Carbohydr Polym 57:225CrossRefGoogle Scholar
  18. 18.
    Abadie MJM, Parfait A, Rouby M (1994) Eur Polym J 30:399CrossRefGoogle Scholar
  19. 19.
    Hong WB, Lee YT, Gong HQ et al (2004) Appl Therm Eng 24:255CrossRefGoogle Scholar
  20. 20.
    Wang SJ, Fan XD, Kong J et al (2008) J Appl Polym Sci 107:3812CrossRefGoogle Scholar
  21. 21.
    Huang TH, Yu ZJ, He XM et al (2007) Chinese Chem Lett 18:754CrossRefGoogle Scholar
  22. 22.
    Li HB, Zhang LT, Cheng LF et al (2008) J Eur Ceram Soc 28:887CrossRefGoogle Scholar
  23. 23.
    Waguespack LE (2003) User handbook of photo calorimeter accessory. Waters-TA, USA, p 21Google Scholar
  24. 24.
    Lecamp L, Youssef B, Bunel C et al (1997) Polymer 38:6089CrossRefGoogle Scholar
  25. 25.
    Boey FYC, Qiang W (2000) Polymer 41:2081CrossRefGoogle Scholar
  26. 26.
    Iojoiu C, Marc JMA, Harabagiu V et al (2000) Eur Polym J 36:2115CrossRefGoogle Scholar
  27. 27.
    Ruiz CSB, Machado LDB, Volponi JE et al (2003) Nucl Instrum Methods Phys Res B 208:309CrossRefGoogle Scholar
  28. 28.
    Kong J, Fan XD, Zhang GB et al (2006) Polymer 47:1519CrossRefGoogle Scholar
  29. 29.
    Maffezzoli A, Terzi R (1998) Thermochim Acta 321:111CrossRefGoogle Scholar
  30. 30.
    Lecamp L, Youssef B, Bunel C et al (1999) Polymer 40:1403CrossRefGoogle Scholar
  31. 31.
    Ramis X, Morancho JM, Cadenato A et al (2007) Thermochim Acta 463:81CrossRefGoogle Scholar
  32. 32.
    Ly HQ, Taylor R, Day RJ et al (2001) J Mater Sci 36:4037. doi: https://doi.org/10.1023/A:1017942826657 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Houbu Li
    • 1
  • Litong Zhang
    • 1
  • Laifei Cheng
    • 1
  • Haitao Kang
    • 1
  • Yiguang Wang
    • 1
    Email author
  1. 1.National Key Laboratory of Thermostructure Composite MaterialsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations