Journal of Materials Science

, Volume 44, Issue 4, pp 1045–1053 | Cite as

Structural, mechanical, and tribological properties of AISI 304 and AISI 316L steels submitted to nitrogen–carbon glow discharge

  • F. C. Nascimento
  • C. M. LepienskiEmail author
  • C. E. Foerster
  • A. Assmann
  • S. L. R. da Silva
  • C. J. de M. Siqueira
  • A. L. Chinelatto


Glow discharge (GD) nitrocarburizing, at low-carbon content and different working temperatures, was performed on AISI 316L and AISI 304 stainless steels. Structural compositions were studied by X-ray diffraction. Instrumented indentation and conventional Vickers method allowed hardness profiles to be determined. Tribological behavior was studied by means of reciprocating sliding and nanoscratch tests. After nitrocarburizing, both steels showed similar embedded nitride and carbide formations. The layer formed by GD in nitrogen–carbon atmosphere is thicker than those consisting solely of nitrogen particularly for AISI 316L. At working temperatures higher than 400 °C, roughness increased and wear was limited to asperity compaction. Wear mechanisms were similar in both steels. However, wear was reduced by up to a factor of 5 in treated steels. No difference in elastic surface recovery was observed after nitrocarburizing in either steel.


Austenite Glow Discharge Hardness Profile AISI 316L Instrument Indentation 



We would like to acknowledge the Brazilian agency CNPq, for its financial support, and the Centro de Microscopia Eletrônica-UFPR.


  1. 1.
    Jones AM, Bull SJ (1996) Surf Coat Technol 83:269CrossRefGoogle Scholar
  2. 2.
    Blawert C, Weisheit A, Mordike BL, Knoop FM (1996) Surf Coat Technol 85:15CrossRefGoogle Scholar
  3. 3.
    Larisch B, Brusky U, Spies HJ (1999) Surf Coat Technol 116–119:205CrossRefGoogle Scholar
  4. 4.
    Blawert C, Mordike BL, Collins GA, Short KT, Jirásková Y, Schneeweiss O, Perina V (2000) Surf Coat Technol 128–129:219CrossRefGoogle Scholar
  5. 5.
    Hanninen H, Romu J, Ilola R, Tervo J, Laitinen A (2001) J Mater Process Technol 117:424CrossRefGoogle Scholar
  6. 6.
    Tsujikawa M, Yamauchi N, Ueda N, Sone T, Hirose Y (2005) Surf Coat Technol 193:309CrossRefGoogle Scholar
  7. 7.
    Sun Y (2005) J Mater Process Technol 168:189CrossRefGoogle Scholar
  8. 8.
    Foerster CE, Serbena FC, da Silva SLR, Lepienski CM, Siqueira CJM, Ueda M (2007) Nucl Instrum Methods Phys Res B 257:732CrossRefGoogle Scholar
  9. 9.
    Foerster CE, Souza JFP, Silva CA, Ueda M, Kuromoto NK, Serbena FC, Silva SLR, Lepienski CM (2007) Nucl Instrum Methods Phys Res B 257:727CrossRefGoogle Scholar
  10. 10.
    Oddershede J, Christiansen TL, Stahl K, Somers MAJ (2008) J Mater Sci 43:5358. doi: CrossRefGoogle Scholar
  11. 11.
    da Silva LLG, Ueda M, Mello CB, Codaro EN, Lepienski CM (2008) J Mater Sci 43:5989. doi: CrossRefGoogle Scholar
  12. 12.
    Paternoster C, Fabrizi A, Cecchini R, El Mehtedi M, Choquet P (2008) J Mater Sci 43:3377. doi: CrossRefGoogle Scholar
  13. 13.
    Li CX, Dong H, Bell T (2006) J Mater Sci 41:6116. doi: CrossRefGoogle Scholar
  14. 14.
    Dasgupta A, Kuppusami P, Vijayalakshmi M, Raghunathan VS (2007) J Mater Sci 42:8447. doi: CrossRefGoogle Scholar
  15. 15.
    Chen FS, Chang CN (2003) Surf Coat Technol 173:9CrossRefGoogle Scholar
  16. 16.
    Sun Y (2005) Mater Sci Eng A 404:124CrossRefGoogle Scholar
  17. 17.
    Sun Y, Haruman E (2006) Vacuum 81:114CrossRefGoogle Scholar
  18. 18.
    Tsujikawa M, Yoshida D, Yamauchi N, Ueda N, Sone T, Tanaka S (2005) Surf Coat Technol 200:507CrossRefGoogle Scholar
  19. 19.
    Abd El-Rahamn AM, El-Hossary FM, Negm NZ, Prokert F, Richter E, Moeller W (2004) Nucl Instrum Methods Phys Res B 226:499CrossRefGoogle Scholar
  20. 20.
    Abd El-Rahamn AM, El-Hossary FM, Fitz T, Negm NZ, Prokert F, Pham MT, Richter E, Moeller W (2004) Surf Coat Technol 183:268CrossRefGoogle Scholar
  21. 21.
    Jenkins R, Fawcet TG, Smith DK, Visser JW, Morris MC, Frevel LK (1986) Powder Diffr 1:51CrossRefGoogle Scholar
  22. 22.
    Rietveld HM (1967) Acta Crystallogr 22:151CrossRefGoogle Scholar
  23. 23.
    Wiles DB, Young RA (1981) J Appl Crystallogr 14:149CrossRefGoogle Scholar
  24. 24.
    Carvajal JR (2000) An introduction to the program FullProf. Lab Leon Brillouin, SaclayGoogle Scholar
  25. 25.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  26. 26.
    Blawert C, Kalvelage H, Mordike BL, Collins GA, Short KT, Jirásková Y, Schneeweiss O (2001) Surf Coat Technol 136:181CrossRefGoogle Scholar
  27. 27.
    Fewell MP, Priest JM (2008) Surf Coat Technol 202:1802CrossRefGoogle Scholar
  28. 28.
    Czerwiec T, Renevier N, Michel H (2000) Surf Coat Technol 131:267CrossRefGoogle Scholar
  29. 29.
    Baranowska J, Franklin SE, Pelletier CGN (2005) Wear 259:432CrossRefGoogle Scholar
  30. 30.
    Williamson DL, Davis JA, Wilbur PJ (1998) Surf Coat Technol 103–104:178CrossRefGoogle Scholar
  31. 31.
    Parascandola S, Moeller W, Willianson DL (2000) Appl Phys Lett 67:2194CrossRefGoogle Scholar
  32. 32.
    de Souza GB, Foerster CE, Silva SLR, Lepienski CM (2006) Mater Res 9:159CrossRefGoogle Scholar
  33. 33.
    Alves C, Rodrigues JA (2000) Mat Sci Eng A 279:10CrossRefGoogle Scholar
  34. 34.
    Saha R, Nix WD (2002) Acta Mater 5023:23CrossRefGoogle Scholar
  35. 35.
    Zum Garh K-H (1987) Microstructure and wear of materials tribology series, vol 10. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Bushan B, Grupta BK (1991) Handbook of tribology coatings and surfaces treatments. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • F. C. Nascimento
    • 1
  • C. M. Lepienski
    • 2
    Email author
  • C. E. Foerster
    • 1
  • A. Assmann
    • 1
  • S. L. R. da Silva
    • 1
  • C. J. de M. Siqueira
    • 3
  • A. L. Chinelatto
    • 4
  1. 1.Depto. de FísicaUEPGPonta GrossaBrazil
  2. 2.Depto. de FísicaUFPR, CP 19044CuritibaBrazil
  3. 3.Depto. de Eng. MecânicaUFPR, CP 19011CuritibaBrazil
  4. 4.Depto. de Eng. de MateriaisUEPG, 84030-900Ponta GrossaBrazil

Personalised recommendations