Journal of Materials Science

, Volume 44, Issue 4, pp 939–944 | Cite as

Effects of Ga content on thermoelectric properties of P-type Ba8Ga16+xZn3Ge27−x type-I clathrates

  • Shu-kang DengEmail author
  • Xin-feng Tang
  • Pei-zhi Yang
  • Ming Li


P-type Ba8Ga16+xZn3Ge27−x (x = 0.1, 0.2, 0.3, and 0.4) type-I clathrates were synthesized by combining solid-state reaction with spark plasma sintering (SPS) technology. The effects of slight increase of Ga content on thermoelectric properties have been investigated. The results show that at room temperature the carrier concentration Np of p-type Ba8Ga16+xZn3Ge27−x clathrates increases remarkably compared with that of Ba8Ga16Zn3Ge27 compound, which results in the increases of electrical conductivity although carrier mobility μH slightly decreases. The thermal conductivity κ of all samples increases with the increase of Ga content. Ba8Ga16.2Zn3Ge26.8 compound exhibits the highest ZT value of 0.43 at 700 K, which is increased by 13% compared with that of Ba8Ga16Zn3Ge27 compound.


Carrier Concentration Clathrate Spark Plasma Sinter Seebeck Coefficient Lattice Thermal Conductivity 



This work is sponsored by the National Basic Research Program of China (Grant Nos. 2007CB607501 and 2007CB607503) and Yunnan Natural Science Fund (Grand No. 2008CD114).


  1. 1.
    Nolas GS, Cohn JL, Slack GA, Schujman SB (1998) Appl Phys Lett 73:178CrossRefGoogle Scholar
  2. 2.
    Kuznetsov VL, Kuznetsova LA, Kaliazin AE, Rowe DM (2000) J Appl Phys 87:7871CrossRefGoogle Scholar
  3. 3.
    Nolas GS, Weakley TJR, Cohn JL, Sharma R (2000) Phys Rev B 61:3845CrossRefGoogle Scholar
  4. 4.
    Nolas GS (1999) Mater Res Soc Symp Proc 545:435CrossRefGoogle Scholar
  5. 5.
    Paschen S, Carrillo-Cabrera W, Bentien A, Tran VH, Baenitz M, Grin Y, Steglich F (2001) Phys Rev B 64:214404CrossRefGoogle Scholar
  6. 6.
    Bryan JD, Blake NP, Metiu H, Stucky GD, Iversen BB, Poulsen RD, Bentien A (2002) J Appl Phys 92:7281CrossRefGoogle Scholar
  7. 7.
    Meng JF, Chandra Shekar NV, Badding JV, Nolas GS (2001) J Appl Phys 89:1730CrossRefGoogle Scholar
  8. 8.
    Chakoumakos BC, Sales BC, Mandrus DG, Nolas GS (2000) J Alloys Compd 296:80CrossRefGoogle Scholar
  9. 9.
    Cohn JL, Nolas GS, Fessatidis V, Metcalf TH, Slack GA (1999) Phys Rev Lett 82:779CrossRefGoogle Scholar
  10. 10.
    Saramat A, Svensson G, Palmqvist AEC (2006) J Appl Phys 99:023708CrossRefGoogle Scholar
  11. 11.
    Kim JH, Norihiko L, Okamoto KK, Katsushi T, Haruyuki I (2006) Acta Mater 54:2057CrossRefGoogle Scholar
  12. 12.
    Chakoumakos BC, Sales BC, Mandrus DG, Nolas GS (2000) J Alloys Comp 296:80CrossRefGoogle Scholar
  13. 13.
    Cai KF, Zhang LC, Lei Q, Muller E, Stiewe C (2006) Cryst Growth & Des 7:1797CrossRefGoogle Scholar
  14. 14.
    Madsen GKH, Schwarz K, Blaha P, Singh DJ (2003) Phys Rev B 68:125212CrossRefGoogle Scholar
  15. 15.
    Bentien A, Christensen M, Bryan JD, Sanchez A, Paschen S, Steglich F, Stucky GD, Iversen BB (2004) Phys Rev B 69:045107CrossRefGoogle Scholar
  16. 16.
    Avila MA, Suekuni K, Umeo K, Takabatake T (2006) Phys B 383:124CrossRefGoogle Scholar
  17. 17.
    Nolas GS, Slack GA, Schujman SB (2001) In: Tritt TM (ed) Semiconductors and semimetals. Academic Press Inc., New York, p 291Google Scholar
  18. 18.
    Kishimoto K, Akai K, Muraoka N, Koyanagi T, Matsuura M (2006) Appl Phys Lett 891:72106Google Scholar
  19. 19.
    Christensen M, Lock N, Overgaard J, Iversen BB (2006) J Am Chem Soc 128:15657CrossRefGoogle Scholar
  20. 20.
    Latturner S, Bu X, Blake N, Metiu H, Stucky G (2000) J Solid State Chem 151:61CrossRefGoogle Scholar
  21. 21.
    Deng SK, Tang XF, Zhang QJ (2007) J Appl Phys 102:043702CrossRefGoogle Scholar
  22. 22.
    Pacheco V, Bentien A, Carrillo-Cabrera W, Paschen S, Steglich F, Grin Y (2005) Phys Rev B 71:165205CrossRefGoogle Scholar
  23. 23.
    Bentien A, Pacheco V, Paschen S, Grin Y, Steglich F (2005) Phys Rev B 71:165206CrossRefGoogle Scholar
  24. 24.
    Sales BC, Chakoumakos BC, Jin R, Thompson JR, Mandrus D (2001) Phys Rev B 63:245113CrossRefGoogle Scholar
  25. 25.
    Uher C, Yang J, Hu S (1999) Mater Res Soc Symp Proc 54:247Google Scholar
  26. 26.
    Qiu L, Swainson IP, Nolas GS, White MA (2004) Phys Rev B 70:035208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shu-kang Deng
    • 1
    Email author
  • Xin-feng Tang
    • 2
  • Pei-zhi Yang
    • 1
  • Ming Li
    • 1
  1. 1.Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing TechnologyYunnan Normal UniversityKunmingChina
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations