Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 1069–1075 | Cite as

Effect of austempering treatment on microstructure and mechanical properties of high-Si steel

  • D. MandalEmail author
  • M. Ghosh
  • J. Pal
  • P. K. De
  • S. Ghosh Chowdhury
  • S. K. Das
  • G. Das
  • Sukomal Ghosh
Article

Abstract

In the present investigation, the influence of austempering treatment on the microstructure and mechanical properties of silicon alloyed cast steel has been evaluated. The experimental results show that an ausferrite structure consisting of bainitic ferrite and retained austenite can be obtained by austempering the silicon alloyed cast steel at different austempering temperature. TEM observation and X-ray analysis confirmed the presence of retained austenite in the microstructure after austempering at 400 °C. The austempered steel has higher strength and ductility compared to as-cast steel. With increasing austempering temperature, the hardness and strength decreased but the percentage of elongation increased. A good combination of strength and ductility has been obtained at an austempering temperature of 400 °C.

Keywords

Austenite Cementite Bainite Ultimate Tensile Strength Ductile Iron 

References

  1. 1.
    Putatunda SK (2003) Mater Des 24:435CrossRefGoogle Scholar
  2. 2.
    Hamid AS, Elliott R (1996) Mater Sci Tech 12(8):679CrossRefGoogle Scholar
  3. 3.
    Li Y, Chen X (2001) Mater Sci Eng A308:277CrossRefGoogle Scholar
  4. 4.
    Edmonds DV, Cochrane RC (1990) Metall Trans A 21:1527CrossRefGoogle Scholar
  5. 5.
    Lee YK, Shin HC, Jang YC, Kim SH, Choi CS (2002) Scr Mater 47:805CrossRefGoogle Scholar
  6. 6.
    Mirak AR, Nili-Ahmadabadi M (2004) Mater Sci Tech 20:897CrossRefGoogle Scholar
  7. 7.
    Bhadeshia HKDH, Edmonds DV (1983) Met Sci 17:420CrossRefGoogle Scholar
  8. 8.
    Daber S, Ravishankar KS, Prasad Rao P (2008) J Mater Sci 43:4929. doi: https://doi.org/10.1007/s10853-008-2717-8 CrossRefGoogle Scholar
  9. 9.
    Daber S, Prasad Rao P (2008) J Mater Sci 43:357. doi: https://doi.org/10.1007/s10853-007-2258-6 CrossRefGoogle Scholar
  10. 10.
    Matsumura O, Sakuma Y, Takechi H (1987) Trans ISIJ 27:570CrossRefGoogle Scholar
  11. 11.
    Sugimoto KI, Ida T, Sakaguchi J, Kashima T (2000) ISIJ Int 40:902CrossRefGoogle Scholar
  12. 12.
    Neves EG, Barbosa RN, Pereloma EV, Santos DB (2008) J Mater Sci 43:5705. doi: https://doi.org/10.1007/s10853-008-2902-9 CrossRefGoogle Scholar
  13. 13.
    Saleh MH, Priestner R (2001) J Mater Proc Tech 113:587CrossRefGoogle Scholar
  14. 14.
    Matlock DK, Krauss G, Speer JG (2001) J Mater Process Tech 117:324CrossRefGoogle Scholar
  15. 15.
    Bailey AJ, Krauss G, Thomson SW, Szilva WA (1996) In: Proceedings of the 37th mechanical working and steel processing conference. ISS, Warrendale, PA, p 455Google Scholar
  16. 16.
    Nili Ahmadabadi M (1998) Metall Mater Trans A 29:2297CrossRefGoogle Scholar
  17. 17.
    Bhadeshia HKDH (1980) Acta Metall 28:1103CrossRefGoogle Scholar
  18. 18.
    Kim SW, Kim SH (1991) J Korean Inst Met Mater 29(10):967Google Scholar
  19. 19.
    Qu J, Yang D (1992) J Iron Steel Res 4(2):45Google Scholar
  20. 20.
    Bhadeshia HKDH, Waugh RW (1982) Acta Metall 30:775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Mandal
    • 1
    Email author
  • M. Ghosh
    • 1
  • J. Pal
    • 1
  • P. K. De
    • 1
  • S. Ghosh Chowdhury
    • 1
  • S. K. Das
    • 1
  • G. Das
    • 1
  • Sukomal Ghosh
    • 1
  1. 1.Metal Extraction and Forming DivisionNational Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations