Journal of Materials Science

, Volume 44, Issue 3, pp 689–699 | Cite as

Pore evolution model of ceramic membrane during constrained sintering

  • Minghui Qiu
  • Jun Feng
  • Yiqun FanEmail author
  • Nanping Xu


Pore size has been found to strongly depend on the sintering program in the preparation of porous ceramic membranes. In this paper, a model was developed to predict the variation in pore size and porosity of membranes during the sintering process. A comparison of shrinkage characteristics was made between the sintering processes of supported membranes and unsupported membranes. For supported membranes, the effect of restriction coming from a rigid substrate on the sintering behavior has been taken into account in the calculation. It is predicted that the pore size increases in supported membranes and decreases in unsupported membranes as the sintering temperature is increased. Calculations also showed that the loss of porosity in the supported membranes was less than that in the unsupported membranes. In order to verify reliability of this model, unsupported and supported membranes were prepared with α-Al2O3 powders at the sintering temperatures ranging from 1125 °C to 1325 °C. The pore size and porosity were measured by gas permeation technique and Archimedes’s method. The experimental results for the unsupported and supported α-Al2O3 membranes showed a good agreement with those calculated from the model. Therefore, this model provides an effective tool in predicting the porosity and the pore size of ceramic membranes at the different sintering temperatures.


Shrinkage Sinter Temperature Sinter Process Ceramic Membrane Shrinkage Rate 



This work was supported by the National Basic Research Program of China (No. 2009CB623400) and the National Nature Science Foundation of China (No. 20436030).


  1. 1.
    Burggraaf AJ (1996) Fundamentals of inorganic membrane science and technology. Elsevier Science, NetherlandsCrossRefGoogle Scholar
  2. 2.
    Shojai F, Mäntylä TA (2001) J Mater Sci 36:3437. doi: CrossRefGoogle Scholar
  3. 3.
    Darcovich K, Toll F, Hontanx P, Roux V, Shinagawa K (2003) Mater Sci Eng A 348:76CrossRefGoogle Scholar
  4. 4.
    Whittemore OJ, Sipe JJ Jr (1974) Powder Technol 9:159CrossRefGoogle Scholar
  5. 5.
    Kingery WD, Bowen HK, Uhlmann DR (1975) Introduction to ceramics. Wiley, New YorkGoogle Scholar
  6. 6.
    Long GG, Krueger S (1991) J Am Ceram Soc 74:1578CrossRefGoogle Scholar
  7. 7.
    Ikegami T, Kotani K, Eguchi K (1987) J Am Ceram Soc 70:885CrossRefGoogle Scholar
  8. 8.
    Cho J, Chan HM, Harmer MP, Rickman JM (1998) J Am Ceram Soc 81:3001CrossRefGoogle Scholar
  9. 9.
    Drahus MD, Chan HM, Rickman JM, Harmer MP (2005) J Am Ceram Soc 88:3369CrossRefGoogle Scholar
  10. 10.
    Dillon SJ, Harmer MP (2008) J Eur Ceram Soc 28:1485CrossRefGoogle Scholar
  11. 11.
    Wang P, Huang P, Xu NP, Shi J, Lin YS (1999) J Membr Sci 155:309CrossRefGoogle Scholar
  12. 12.
    Levänen E, Mäntylä TA (2002) J Eur Ceram Soc 22:613CrossRefGoogle Scholar
  13. 13.
    Wallot J, Reynders P, Herzing AA et al (2008) J Eur Ceram Soc 28:2225CrossRefGoogle Scholar
  14. 14.
    Guillon O, Krauß S, Rodel J (2007) J Eur Ceram Soc 27:2623CrossRefGoogle Scholar
  15. 15.
    Feng J, Fan YQ, Qi H, Xu NP (2007) J Membr Sci 288:20CrossRefGoogle Scholar
  16. 16.
    Mohanram A, Lee SH, Messing GL, Green DJ (2006) J Am Ceram Soc 84:1923CrossRefGoogle Scholar
  17. 17.
    Nguyen TL, Kobayashi K, Honda T (2004) Solid State Ionics 174:163CrossRefGoogle Scholar
  18. 18.
    Garino TJ, Bowen HK (1987) J Am Ceram Soc 70:C315CrossRefGoogle Scholar
  19. 19.
    Scherer GW, Garino TJ (1985) J Am Ceram Soc 68:216CrossRefGoogle Scholar
  20. 20.
    Garino TJ, Bowen HK (1990) J Am Ceram Soc 73:251CrossRefGoogle Scholar
  21. 21.
    Bordia RK, Raj R (1985) J Am Ceram Soc 68:287CrossRefGoogle Scholar
  22. 22.
    Carroll DR, Rahaman MN (1994) J Eur Ceram Soc 14:473CrossRefGoogle Scholar
  23. 23.
    Bordia RK, Jagota J (1993) J Am Ceram Soc 76:2475CrossRefGoogle Scholar
  24. 24.
    Kang SL (2005) Sintering densification, grain growth. Elsevier Science, NetherlandsGoogle Scholar
  25. 25.
    Rahaman MN (2003) Ceramic processing and sintering. Marcel Dekker, New YorkGoogle Scholar
  26. 26.
    Akash A, Mayo MJ (1999) J Am Ceram Soc 82:2948CrossRefGoogle Scholar
  27. 27.
    Chang JC, Jean JH (2006) J Am Ceram Soc 89:829CrossRefGoogle Scholar
  28. 28.
    Tzeng SY, Jean JH (2002) J Am Ceram Soc 85:335CrossRefGoogle Scholar
  29. 29.
    Zuo R, Aulbach E, Rodel J (2004) J Am Ceram Soc 87:526CrossRefGoogle Scholar
  30. 30.
    Huang CC, Jean JH (2004) J Am Ceram Soc 87:1454CrossRefGoogle Scholar
  31. 31.
    Lin YS (1993) J Membr Sci 79:55CrossRefGoogle Scholar
  32. 32.
    Lin YS, Burggraaf AJ (1993) J Membr Sci 79:65CrossRefGoogle Scholar
  33. 33.
    Yasuda H, Tsai JT (1974) J Appl Polym Sci 18:805CrossRefGoogle Scholar
  34. 34.
    Lin YS, Burggraaf AJ (1992) AIChE J 38:445CrossRefGoogle Scholar
  35. 35.
    Uhlhorn RJR, Keizer K, Burggraaf AJ (1992) J Mater Sci 27:527. doi: CrossRefGoogle Scholar
  36. 36.
    Scherer JW, Rekhon SM (1982) J Am Ceram Soc 65:352CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingChina

Personalised recommendations