Journal of Materials Science

, Volume 44, Issue 5, pp 1198–1205 | Cite as

Fabrication and characterization of electrospun titania nanofibers

  • Ramya Chandrasekar
  • Lifeng Zhang
  • Jane Y. Howe
  • Nyle E. Hedin
  • Yan ZhangEmail author
  • Hao FongEmail author


Titania (TiO2) nanofibers were fabricated by electrospinning three representative spin dopes made of titanium (IV) n-butoxide (TNBT) and polyvinylpyrrolidone (PVP) with the TNBT/PVP mass ratio being 1/2 in three solvent systems including N,N-dimethylformamide (DMF), isopropanol, and DMF/isopropanol (1/1 mass ratio) mixture, followed by pyrolysis at 500 °C. The detailed morphological and structural properties of both the as-electrospun precursor nanofibers and the resulting final TiO2 nanofibers were characterized by SEM, TEM, and XRD. The results indicated that the precursor nanofibers and the final TiO2 nanofibers made from the spin dopes containing DMF alone or DMF/isopropanol mixture as the solvent had the common cylindrical morphology with diameters ranging from tens to hundreds of nanometers, while those made from the spin dope containing isopropanol alone as the solvent had an abnormal concave morphology with sizes/widths ranging from sub-microns to microns. Despite the morphological discrepancies, all precursor nanofibers were structurally amorphous without distinguishable phase separation, while all final TiO2 nanofibers consisted of anatase-phased TiO2 single-crystalline grains with sizes of approximately 10 nm. The electrospun TiO2 nanofiber mat is expected to significantly outperform other forms (such as powder and film) of TiO2 for the solar cell (particularly dye-sensitized solar cell) and photo-catalysis applications.


TiO2 Solar Cell Pyrolysis Temperature Anatase TiO2 Alkoxide Precursor 



This research was supported by the U.S. Air Force Research Laboratory (AFRL) under the Cooperative Agreement Number (CAN) of FA9453-06-C-0366. TEM study was sponsored by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency & Renewable Energy, Office of FreedomCAR and Vehicle Technologies, though the High Temperature Materials Laboratory (HTML) at the Oak Ridge National Laboratory (ORNL).


  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789CrossRefGoogle Scholar
  2. 2.
    Bach U, Lupo D, Comte P, Moser JE, Weissorte F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583CrossRefGoogle Scholar
  3. 3.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11(1):15CrossRefGoogle Scholar
  4. 4.
    Wold A (1993) Chem Mater 5:280CrossRefGoogle Scholar
  5. 5.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  6. 6.
    Reneker DH, Chun I (1996) Nanotechnology 7:216CrossRefGoogle Scholar
  7. 7.
    Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Phys 87:4531CrossRefGoogle Scholar
  8. 8.
    Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Appl Phys Lett 78:1149CrossRefGoogle Scholar
  9. 9.
    Deitzel JM, Kleinmeyer J, Harris D, Beck-Tan NC (2001) Polymer 42:261CrossRefGoogle Scholar
  10. 10.
    Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Adv Mater 13(1):70CrossRefGoogle Scholar
  11. 11.
    Fong H, Reneker DH (2001) In: Salem DR (ed) Structure formation in polymeric fibers. Hanser Gardner, Cincinnati, p 225CrossRefGoogle Scholar
  12. 12.
    Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223CrossRefGoogle Scholar
  13. 13.
    Dzenis Y (2004) Science 304:1917CrossRefGoogle Scholar
  14. 14.
    Fong H (2007) In: Nalwa HS (ed) Polymeric nanostructures and their applications. American Scientific Publishers, Los Angeles, p 451Google Scholar
  15. 15.
    Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670CrossRefGoogle Scholar
  16. 16.
    Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) J Mater Sci Lett 22:891CrossRefGoogle Scholar
  17. 17.
    Liu Y, Sagi S, Chandrasekar R, Zhang L, Hedin NE, Fong H (2008) J Nanosci Nanotechnol 8:1528CrossRefGoogle Scholar
  18. 18.
    Li D, McCann JT, Gratt M, Xia YN (2004) Chem Phys Lett 394:387CrossRefGoogle Scholar
  19. 19.
    Li D, Xia YN (2003) Nano Lett 3(4):555CrossRefGoogle Scholar
  20. 20.
    Lee SH, Tekmen C, Sigmund WM (2005) Mater Sci Eng A 398:77CrossRefGoogle Scholar
  21. 21.
    Nuansing W, Ninmuang S, Jarernboon W, Maensiri S, Seraphin S (2006) Mater Sci Eng B 131:147CrossRefGoogle Scholar
  22. 22.
    Fong H, Chun I, Reneker DH (1999) Polymer 40:4585CrossRefGoogle Scholar
  23. 23.
    Theron SA, Zussman E, Yarin AL (2004) Polymer 45:2017CrossRefGoogle Scholar
  24. 24.
    Arinstein A, Zussman E (2007) Phys Rev E 76:056303CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Zhong X, Liu S, Li D, Han M (2005) Angew Chem Int Ed 44:3466CrossRefGoogle Scholar
  26. 26.
    Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistrySouth Dakota School of Mines and TechnologyRapid CityUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.School of Physics and Materials ScienceAnhui UniversityHefeiChina

Personalised recommendations