Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2320–2326 | Cite as

The influence of heat treatment on the microstructural, mechanical and corrosion behaviour of cold sprayed SS 316L coatings

  • G. SundararajanEmail author
  • P. Sudharshan Phani
  • A. Jyothirmayi
  • Ravi C. Gundakaram
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

The present study evaluates the response of cold sprayed SS 316L coatings on mild steel substrate to aqueous corrosion in a 0.1 N HNO3 solution as determined using polarization tests. The corrosion behaviour of the SS 316L coating was studied not only in the as-coated condition, but also after heat treatment at 400, 800 and 1,100 °C. Heat treatment reduced the porosity, improved inter-splat bonding, increased the elastic modulus and more importantly increased the corrosion resistance of the cold sprayed SS 316L coating.

Keywords

Corrosion Resistance Corrosion Behaviour Heat Treatment Temperature HNO3 Solution Polarization Test 

Notes

Acknowledgements

The authors wish to thank Director, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) for granting permission to publish this paper. We also express our gratitude to the reviewers whose comments have certainly improved the quality of the paper.

References

  1. 1.
    Karthikeyan J, Kay CM (2003) In: Marple BR, Moreau C (eds) Thermal spray: advancing the science and applying the technology. ASM International, Orlando, p 117Google Scholar
  2. 2.
    Alkimov AP, Papyrin AN, Kosarev VF, Nesterovich NJ, Shuspanov MM (1994) US patent 5,302,414Google Scholar
  3. 3.
    Dykhuizen RC, Smith MF, Gilmore DL et al (1999) J Thermal Spray Technol 8:559CrossRefGoogle Scholar
  4. 4.
    Kreye H, Stoltenhoff T (2000) In: Berndt CC (ed) Thermal spray: surface engineering via applied research. ASM International, Montreal, p 419Google Scholar
  5. 5.
    Stoltenhoff T, Kreye H, Richter HJ (2002) J Thermal Spray Technol 11:542CrossRefGoogle Scholar
  6. 6.
    Li W-Y, Liao H, Douchy G et al (2007) Mater Des 28:2129CrossRefGoogle Scholar
  7. 7.
    Voyer J, Stoltenhoff T, Kreye H (2003) In: Marple BR, Moreau C (eds) Thermal spray: advancing the science and applying the technology. ASM International, Orlando, p 71Google Scholar
  8. 8.
    Schmidt T, Gartner F, Assadi H et al (2006) Acta Mater 54:729CrossRefGoogle Scholar
  9. 9.
    Sudharshan Phani P, Vishnukanthan V, Sundararajan G (2007) Acta Mater 55:4741CrossRefGoogle Scholar
  10. 10.
    Sudharshan Phani P, Srinivasa Rao D, Joshi SV, Sundararajan G (2007) J Thermal Spray Technol 16:425CrossRefGoogle Scholar
  11. 11.
    Li W-Y, Li C-J, Liao H (2006) J Thermal Spray Technol 15:206CrossRefGoogle Scholar
  12. 12.
    Borchers C, Gartner F, Stoltenhoff T, Kreye H (2005) Acta Mater 53:2991CrossRefGoogle Scholar
  13. 13.
    Gartner F, Stoltenhoff T, Voyer J et al (2006) Surf Coat Technol 200:6770CrossRefGoogle Scholar
  14. 14.
    Stoltenhoff T, Borchers C, Gartner F, Kreye H (2006) Surf Coat Technol 200:4947CrossRefGoogle Scholar
  15. 15.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  16. 16.
    Thompson JA, Clyne TW (2001) Acta Mater 49:1565CrossRefGoogle Scholar
  17. 17.
    Nakamura T, Qian G, Berndt CC (2000) J Am Ceram Soc 83:578CrossRefGoogle Scholar
  18. 18.
    Luo J, Stevens R (1999) Ceram Inter 25:281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Sundararajan
    • 1
    Email author
  • P. Sudharshan Phani
    • 1
  • A. Jyothirmayi
    • 1
  • Ravi C. Gundakaram
    • 1
  1. 1.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations