Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 1127–1136 | Cite as

Failure behavior of Cu–Ti–Zr-based bulk metallic glass alloys

  • Medhat Awad El-Hadek
  • Magdy Kassem
Article

Abstract

Microstructure fracture and mechanical properties of Cu-based bulk metallic glass alloys were investigated. Centrifugal casting into copper molds were used to manufacture basic Cu47Ti33Zr11Ni9, and modified Cu47Ti33Zr11Ni7Si1Sn1 alloys. Although the alloys show an amorphous structure, TEM images revealed the formation of nanoparticles. At room temperature compression tests reveal fracture strength of 2000 MPa, elastic modulus of 127 GPa, and 1.8% fracture strain for the unmodified basic alloy. Whereas the modified alloy exhibits a fracture strength of 2179 MPa, elastic modulus reaches 123 GPa, and 2.4% fracture strain. So, with the addition of 1 at.% Si and Sn, the fracture strength improves by 9% and the fracture strain improves by 25%, but the fracture behavior under compression conditions exhibits a conical shape similar to that produced by tensile testing of ductile alloys. A proposed fracture mechanism explaining the formation of the conical fracture surface was adopted. The formation of homogeneously distributed nano-size (2–5 nm) precipitates changes the mode of fracture of the metallic glass from single to multiple shear plane modes leading to the conical shape fracture surface morphology.

Keywords

High Resolution Transmission Electron Microscopy Shear Band Metallic Glass Amorphous Alloy High Resolution Transmission Electron Microscopy 

References

  1. 1.
    Zhang T, Inoue A, Masumoto T (1991) Mater Trans JIM 32(11):1005CrossRefGoogle Scholar
  2. 2.
    Inoue A (1998) Acta Mater 48(1):279CrossRefGoogle Scholar
  3. 3.
    Gilbert CG, Ritchie RO, Johnson WL (1997) Appl Phys Lett 71:476CrossRefGoogle Scholar
  4. 4.
    Conner D, Rosakis AJ, Johnson WL, Owen DM (1997) Scr Mater 37(9):1373CrossRefGoogle Scholar
  5. 5.
    Zhang QS, Zhang HF, Deng YF, Ding BZ, Hu ZQ (2003) Scr Mater 49(4):273CrossRefGoogle Scholar
  6. 6.
    El-Hadek MA, Kassem M (2008) Int J Mech Mater Des 4(3):279CrossRefGoogle Scholar
  7. 7.
    Hays CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84(13):2901CrossRefGoogle Scholar
  8. 8.
    Glade SC, Löffler JF, Bossuyt S, Johnson W (2001) J Appl Phys 89:1573CrossRefGoogle Scholar
  9. 9.
    Bae DH, Lim HK, Kim SH, Kim DH, Kim WT (2002) Acta Mater 50(7):1749CrossRefGoogle Scholar
  10. 10.
    Schroers J (2007) Acta Mater 56(3):471CrossRefGoogle Scholar
  11. 11.
    Park ES, Lim HK, Kim WT, Kim DH (2002) J Non-Cryst Solids 298(1):15CrossRefGoogle Scholar
  12. 12.
    Choi-Yim H, Busch R, Johnson WL (1998) J Appl Phys 83(12):7993CrossRefGoogle Scholar
  13. 13.
    Spaepen F, Taub A (1983) Amorphous metallic alloys. Butterworth, LondonGoogle Scholar
  14. 14.
    Nishiyama N, Inoue A (1997) Mater Trans JIM 38(5):464CrossRefGoogle Scholar
  15. 15.
    Volkert CA, Lilleodden ET (2006) Phil Mag 86(33–35):5567CrossRefGoogle Scholar
  16. 16.
    El-Hadek MA, Kaytbay S (2008) Strain. doi: https://doi.org/10.1111/j.1475-1305.2008.00552.x
  17. 17.
    Bruck HA, Christman T, Rosakis AJ, Johnson W (1994) Scr Metall Mater 30(4):429CrossRefGoogle Scholar
  18. 18.
    Scudino S, Surreddi KB, Sager S, Sakaliyska M, Kim JS, Löser W, Eckert J (2008) J Mater Sci 43(13):4518. doi: https://doi.org/10.1007/s10853-008-2647-5 CrossRefGoogle Scholar
  19. 19.
    Bhowmick R, Majumdar B, Misra DK, Ramamurty U, Chattopadhyay K (2007) J Mater Sci 42(22):9359. doi: https://doi.org/10.1007/s10853-007-1856-7 CrossRefGoogle Scholar
  20. 20.
    Donovan PE (1988) Mater Sci Eng 98:487CrossRefGoogle Scholar
  21. 21.
    Lowhaphandu P, Montgomery SL, Lewandowski JJ (1999) Scr Mater 41(1):19CrossRefGoogle Scholar
  22. 22.
    Wright WJ, Saha R, Nix WD (2001) Mater Trans JIM 42:642CrossRefGoogle Scholar
  23. 23.
    Wright WJ, Hufnagel TC, Nix WD (2003) J Appl Phys 93(3):1432CrossRefGoogle Scholar
  24. 24.
    Donovan PE (1989) Acta Mater 37:445CrossRefGoogle Scholar
  25. 25.
    Chen D, Takeuchi A, Inoue A (2007) J Mater Sci 42(20):8662. doi: https://doi.org/10.1007/s10853-007-1830-4 CrossRefGoogle Scholar
  26. 26.
    Zhang ZF, Eckert J, Schultz L (2003) Acta Mater 51(4):1167CrossRefGoogle Scholar
  27. 27.
    Liu CT, Heatherly L, Easton DS, Carmichael CA, Schneibel JH, Chen CH (1998) Metall Mater Trans A 29(7):1811CrossRefGoogle Scholar
  28. 28.
    Qiu K, Hao DZ, Ren YL, Zhang H (2007) J Mater Sci 42(9):3223. doi: https://doi.org/10.1007/s10853-006-0238-x CrossRefGoogle Scholar
  29. 29.
    Bian Z, He G, Chen GL (2002) Scr Mater 46(6):407CrossRefGoogle Scholar
  30. 30.
    Kim HS, Bush MB, Esstrin Y (2000) Acta Mater 48(2):493CrossRefGoogle Scholar
  31. 31.
    Palmqvist S (1963) Jernkontoreets Ann 147:107Google Scholar
  32. 32.
    Chen H, He Y, Shiflet GJ, Poon SJ (1994) Nature 367:541CrossRefGoogle Scholar
  33. 33.
    He Y, Shiflet GJ, Poon SJ (1995) Acta Mater 43(1):83CrossRefGoogle Scholar
  34. 34.
    Gao MC, Hackenberg RE, Shiflet GJ (2003) Appl Phys Lett 83(13):2575CrossRefGoogle Scholar
  35. 35.
    Leamy HJ, Wang TT, Chen HS (1972) Metall Mater Trans B 3(3):699CrossRefGoogle Scholar
  36. 36.
    Calin M, Eckert J, Schultz L (2003) Scr Mater 48(6):653CrossRefGoogle Scholar
  37. 37.
    Bian Z, Chen GL, He G, Hui XD (2001) Mater Sci Eng A 316(1–2):135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical Design & Production, Faculty of EngineeringSuez Canal UniversityPort-SaidEgypt
  2. 2.Department of Metallurgy, Faculty of Petroleum & Mining EngineeringSuez Canal UniversitySuezEgypt

Personalised recommendations