Journal of Materials Science

, Volume 44, Issue 3, pp 931–938 | Cite as

Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols

  • Yuan Zhang
  • Hao Liang
  • Cun Yu Zhao
  • Yuan LiuEmail author


Macroporous alumina monoliths have been prepared for the first time by filling polystyrene foam templates with alumina hydrosols which were prepared from pseudo-boehmite. Polystyrene foam templates were obtained by polymerization in highly concentrated water-in-oil (W/O) emulsions. The organic templates were subsequently removed by calcination. The effects of filling times of the alumina hydrosols, calcination temperature, and CTAB surfactant addition in the hydrosols on the properties of the monolith have been investigated. TG, FT-IR, SEM, TEM, N2 adsorption–desorption, and XRD techniques were used for characterization. The so prepared monoliths are the replicas of the polystyrene foams and are characterized with hierarchically porous structure. The macropores are interconnected and the macropore walls contain many meso and/or micropores. The hierarchically macro-meso-microporous structure can be controlled and tailored by adjusting the preparation conditions stated above and by addition of surfactant, and the organic components can be eliminated by high temperature calcination. When the calcination temperatures are 600 °C and 900 °C, the γ-Al2O3 phases are obtained, with SBET of 228 and 85 m2 g−1, respectively. When calcined at 1100 °C, the alumina monolith presents a single θ-Al2O3 phase with SBET of 80 m2 g−1. The 1300 °C calcined sample takes on the single α-Al2O3 phase with SBET of 5 m2 g−1 and compressive strength of 3.1 MPa.


Surfactant Foam Compressive Strength Calcination Temperature Volume Shrinkage 



The financial support of this work by Hi-tech Research and Development Program of China (863 program, Granted as No. 2006AA05Z115 and 2007AA05Z104) and the Cheung Kong Scholar Program for Innovative Teams of the Ministry of Education (No IRT0641) are gratefully acknowledged.

Supplementary material

10853_2008_3189_MOESM1_ESM.doc (10.3 mb)
Supplementary material 1 (DOC 10574 kb)


  1. 1.
    Vantomme A, Léonard A, Yuan ZY, Su BL (2007) Colloids Surf A Physicochem Eng Asp 300:70CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Zhao CY, Liang H, Liu Y Catal Lett. doi: CrossRefGoogle Scholar
  3. 3.
    Liang C, Dai S, Guiochon G (2003) Anal Chem 75:4904CrossRefGoogle Scholar
  4. 4.
    Bing Z, Yuan Y, Wang Y, Fu ZW (2006) Electrochem Solid State Lett 9:A101CrossRefGoogle Scholar
  5. 5.
    Imhof A, Pine DJ (1997) Nature 389:948CrossRefGoogle Scholar
  6. 6.
    Imhof A, Pine DJ (1998) Adv Mater 10:697CrossRefGoogle Scholar
  7. 7.
    Stein A (2001) Microporous Mesoporous Mater 44–45:227CrossRefGoogle Scholar
  8. 8.
    Stein A, Schroden RC (2001) Curr Opin Solid State Mater Sci 5:553CrossRefGoogle Scholar
  9. 9.
    Guliants VV, Carreon MA, Lin YS (2004) J Memb Sci 235:53CrossRefGoogle Scholar
  10. 10.
    Maekawa H, Esquena J, Bishop S, Solans C, Chmelka BF (2003) Adv Mater 15:591CrossRefGoogle Scholar
  11. 11.
    Ma X, Sun H, Yu P (2008) J Mater Sci 43:887. doi: CrossRefGoogle Scholar
  12. 12.
    Li F, Wang Z, Ergang NS, Fyfe CA, Stein A (2007) Langmuir 23:3996CrossRefGoogle Scholar
  13. 13.
    Ren J, Du ZJ, Zhang C, Li HQ (2006) Chin J Chem 24:955CrossRefGoogle Scholar
  14. 14.
    Alvarez S, Esquena J, Solans C, Fuertes AB (2004) Adv Eng Mater 6:897CrossRefGoogle Scholar
  15. 15.
    Lu AH, Smatt JH, Backlund S, Lindén M (2004) Microporous Mesoporous Mater 72:59CrossRefGoogle Scholar
  16. 16.
    Tonanon N, Siyasukh A, Wareenin Y, Charinpanitkul T, Tanthapanichakoon W, Nishihara H, Mukai SR, Tamon H (2005) Carbon 43:2808CrossRefGoogle Scholar
  17. 17.
    Zhang JC, Zhang H, Wu LB, Ding JD (2006) J Mater Sci 41:1725. doi: CrossRefGoogle Scholar
  18. 18.
    Bil M, Ryszkowska J, Kurzydłowski KJ J Mater Sci. doi: CrossRefGoogle Scholar
  19. 19.
    Sánchez-Valente J, Bokhimi X, Hernández F (2003) Langmuir 19:3583CrossRefGoogle Scholar
  20. 20.
    Kasprzyk-Hordern B (2004) Adv Colloid Interface Sci 110:19CrossRefGoogle Scholar
  21. 21.
    Pesek JJ, Matyska MT (2002) J Chromatogr A 952:1CrossRefGoogle Scholar
  22. 22.
    Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Chem Mater 19:3393CrossRefGoogle Scholar
  23. 23.
    Fujita K, Tokudome Y, Nakanishi K, Miura K, Hirao K (2008) J Non Cryst Solids 354:659CrossRefGoogle Scholar
  24. 24.
    Murai S, Fujita K, Nakanishi K, Hirao K (2006) J Alloys Compd 408–412:831CrossRefGoogle Scholar
  25. 25.
    Han YS, Li JB, Chen YJ (2003) Mater Res Bull 38:373CrossRefGoogle Scholar
  26. 26.
    Han YS, Li JB, Wei QM, Tang K (2002) Ceram Int 28:755CrossRefGoogle Scholar
  27. 27.
    Zhao S, Zhang J, Weng D, Wu X (2003) Surf Coat Tech 167:97CrossRefGoogle Scholar
  28. 28.
    Levin I, Brandon D (1998) J Am Ceram Soc 81:1995CrossRefGoogle Scholar
  29. 29.
    Chin P, Sun X, Roberts GW, Spivey JJ (2006) Appl Catal A Gen 302:22CrossRefGoogle Scholar
  30. 30.
    Zeng SH, Liu Y, Wang YQ (2007) Catal Lett 117:119CrossRefGoogle Scholar
  31. 31.
    Zeng SH, Liu Y (2008) Appl Surf Sci 254:4879CrossRefGoogle Scholar
  32. 32.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London, p 304Google Scholar
  33. 33.
    Santons HS, Kiyohara PK, Santos PS (1994) Ceram Int 20:175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Department of Catalysis Science and Technology, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations