Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 882–888 | Cite as

Laser bonding and characterization of Kapton® FN/Ti and Teflon® FEP/Ti systems

  • Grigor L. Georgiev
  • Taslema Sultana
  • Ronald J. Baird
  • Gregory Auner
  • Golam Newaz
  • Rahul Patwa
  • Hans Herfurth
Article

Abstract

Kapton® FN and Teflon® FEP (fluorinated ethylene propylene) polymers are resistant to most chemical solvents, heat sealable, and have low moisture uptake, which make them attractive as packaging materials for electronics and implantable devices. Kapton® FN/Ti and Teflon® FEP/Ti microjoints were fabricated by using focused infrared laser irradiation. Laser-bonded samples were tested with a micro-testing machine under lap shear load and the bond strength was determined. The bond strength for the Kapton® FN/Ti and Teflon® FEP/Ti systems was found to be 3.32 and 8.48 N/mm2, respectively. The failure mode of the mechanically tested samples was studied by using optical microscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Chemical interactions during laser bonding of Kapton® FN to titanium were studied by using X-ray photoelectron spectroscopy (XPS). The XPS results give evidence for the formation of Ti–F bonds in the interfacial region.

Keywords

Polyimide Titanium Foil Energy Dispersive Spectroscopy Spectrum TiF3 Chemical Bond Formation 

Notes

Acknowledgements

We would like to acknowledge the assistance of Dr. Eric McCullen and the SSIM characterization laboratory in the XPS measurements. We would like to thank Dr. Yi Liu for his assistance in the SEM-EDS experiments. We also acknowledge Dr. Frank Jones for suggesting that we investigate KaptonFN. This work has been supported by Michigan Economic Development Corporation (MEDC). Grant # 06-1-P1-0219 (January 2007–December 2009).

References

  1. 1.
    Kim ET, Seo JM, Zhou JA, Jung H, Kim SJ (2004) IEEE international workshop on biomedical circuits & systems, p 12Google Scholar
  2. 2.
    Lee KK, He J, Singh A, Massia S, Ehteshami G, Kim B, Raupp G (2004) J Micromech Microeng 14:32CrossRefGoogle Scholar
  3. 3.
    Massey LK (2003) Permeability properties of plastics and elastomers: a guide to packaging and barrier materials, 2nd edn. Plastics Design LibraryGoogle Scholar
  4. 4.
    Bauer I, Russek UA, Herfurth H, Witte R, Heinemann S, Newaz G, Mian A, Georgiev D, Auner G (2004) Proceedings of SPIE—Photonics West LASE 2004: lasers and applications in science and engineering conference, vol 5339, p 454Google Scholar
  5. 5.
    Mian A, Newaz G, Vendra L, Rahman N, Georgiev DG, Auner G, Witte R, Herfurth H (2005) J Mater Sci Mater Med 16:229CrossRefGoogle Scholar
  6. 6.
    Georgiev DG, Sultana T, Mian A, Auner G, Herfurth H, Witte R, Newaz G (2005) J Mater Sci 40:5641. doi: https://doi.org/10.1007/s10853-005-1291-6 CrossRefGoogle Scholar
  7. 7.
    Newaz G, Mian A, Sultana T, Mahmood T, Georgiev DG, Auner G, Witte R, Herfurth H (2006) J Biomed Mater Res A 79:159CrossRefGoogle Scholar
  8. 8.
    Georgiev GL, Sultana T, Baird RJ, Auner G, Newaz G, Patwa R, Herfurth H (2008) Appl Surf Sci 254:7173CrossRefGoogle Scholar
  9. 9.
    Shi MK, Lamontagne B, Selmani A, Martinu L, Sacher E, Wertheimer MR, Yelon A (1994) J Vac Sci Technol A 12:807CrossRefGoogle Scholar
  10. 10.
    Du M, Opila RL, Case C (1998) J Vac Sci Technol A 16:155CrossRefGoogle Scholar
  11. 11.
    Chang CA, Kim YY, Schrott AG (1990) J Vac Sci Technol A 8:3304CrossRefGoogle Scholar
  12. 12.
    Carlo SR, Perry CC, Torres J, Wagner AJ, Vectis C, Faibrother DH (2002) Appl Surf Sci 195:93CrossRefGoogle Scholar
  13. 13.
    Lu M, Qian Z, Ren W, Liu S, Shangguan D (1999) Int J Solids Struct 36:65CrossRefGoogle Scholar
  14. 14.
    Sultana T, Newaz G, Georgiev GL, Baird RJ, Auner GW, Patwa R, Herfurth HJ (2008) J Mater Sci (submitted)Google Scholar
  15. 15.
    Rasoul FA, Hill DJT, George GA, O’Donnell JH (1996) Polym Adv Technol 9:24CrossRefGoogle Scholar
  16. 16.
    Baklanov MR, Vanhaelemeersch S, Storm W, Vandervorst W, Maex K (1998) J Vac Sci Technol B 16:164CrossRefGoogle Scholar
  17. 17.
    Ramqvist L, Hamrin K, Johansson G, Fahlmann A, Nordling C (1969) J Phys Chem Solids 30:1835CrossRefGoogle Scholar
  18. 18.
    Franzen HF, Umana MX, McCreary JR, Thorn RJ (1976) J Solid State Chem 18:363CrossRefGoogle Scholar
  19. 19.
    Fracassi F, d’Aagostino R (1992) Pure Appl Chem 64:703CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Grigor L. Georgiev
    • 1
    • 2
  • Taslema Sultana
    • 1
    • 2
  • Ronald J. Baird
    • 3
  • Gregory Auner
    • 2
  • Golam Newaz
    • 2
    • 3
  • Rahul Patwa
    • 4
  • Hans Herfurth
    • 4
  1. 1.Department of Chemical Engineering and Materials ScienceWayne State UniversityDetroitUSA
  2. 2.Smart Sensors and Integrated MicrosystemsWayne State UniversityDetroitUSA
  3. 3.Institute for Manufacturing ResearchWayne State UniversityDetroitUSA
  4. 4.Fraunhofer Center for Laser TechnologyPlymouthUSA

Personalised recommendations