Journal of Materials Science

, Volume 44, Issue 3, pp 903–918 | Cite as

Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites

  • Anirban Ganguly
  • Anil K. BhowmickEmail author


This article deals with the functionalization of a triblock copolymer, poly-(styrene-ethylene-co-butylene)-styrene (SEBS), at the mid-block by means of chemical grafting by two polar moieties—acrylic acid and maleic anhydride and subsequent novel synthesis of nanocomposites based on hydrophilic montmorillonite clay (MT) at very low loadings. The mid-block was grafted with 3 and 6 wt% acrylic acid through solution grafting and 2 and 4 wt% maleic anhydride through melt grafting reactions which were confirmed by spectroscopic techniques. The nanocomposites derived from the grafted SEBS and hydrophilic MT clay conferred dramatically better mechanical, dynamic mechanical, and thermal properties as compared to those of the original SEBS and its clay-based nanocomposites. Different phase separated morphologies could be observed from transmission electron microscopy (TEM) and atomic force microscopy (AFM) studies for grafted SEBS. X-ray diffraction (XRD), AFM, and TEM studies revealed better interaction and dispersion of MT clays with the grafted SEBS matrix, resulting in better transparency of these nanocomposite films. Superlative enhancement of thermal degradation properties was achieved with maleated and acrylated SEBS–MT nanocomposites. Thermodynamic calculations and interfacial tension measurements indicated possible ways of favorable intercalation-exfoliation mechanism of maleated and acrylated SEBS–MT nanocomposites.


Clay Acrylic Acid Triblock Copolymer Maleic Anhydride Dynamic Mechanical Thermal Analysis 



AG acknowledges the scholarship grant in NDF category by AICTE, New Delhi, India. AKB is grateful to the Department of Science and Technology, New Delhi, for partially funding this project.


  1. 1.
    Pinnavaia TJ, Beall GW (eds) (2000) Polymer-clay nanocomposites. Wiley, New YorkGoogle Scholar
  2. 2.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 138:108Google Scholar
  3. 3.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  4. 4.
    Vaia RA, Giannelis EP (1998) Macromolecules 30:8000CrossRefGoogle Scholar
  5. 5.
    Morgan AB, Gilman JW (2003) J Appl Polym Sci 87:1329CrossRefGoogle Scholar
  6. 6.
    Roy SS, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1174CrossRefGoogle Scholar
  9. 9.
    Kato M, Tsukigase A, Tanaka H, Usuki A, Inai I (2006) J Polym Sci A Polym Chem 44:1182CrossRefGoogle Scholar
  10. 10.
    Maiti M, Bhowmick AK (2006) J Polym Sci B Polym Phys 44:162CrossRefGoogle Scholar
  11. 11.
    Sadhu S, Bhowmick AK (2003) Rubber Chem Technol 76:0860CrossRefGoogle Scholar
  12. 12.
    Sadhu S, Bhowmick AK (2004) J Polym Sci B Polym Phys 42:1573CrossRefGoogle Scholar
  13. 13.
    Ren J, Silva AS, Krishnamoorti R (2000) Macromolecules 33:3739CrossRefGoogle Scholar
  14. 14.
    Krishnamoorti R, Silva AS, Mitchell CA (2001) J Chem Phys 115:7175CrossRefGoogle Scholar
  15. 15.
    Silva AS, Mitchell CA, Tse MF, Wang HC, Krishnamoorti R (2001) J Chem Phys 115:7166CrossRefGoogle Scholar
  16. 16.
    Hamley I (ed) (1998) The physics of block copolymers. Oxford University Press, UKGoogle Scholar
  17. 17.
    Hasimoto H, Fujiyama M, Hasimoto T, Kawai H (1981) Macromolecules 14:844CrossRefGoogle Scholar
  18. 18.
    Eirich FR (ed) (1978) Science and technology of rubber, 1st edn. Academic Press, New YorkGoogle Scholar
  19. 19.
    Heino M, Krjava J, Hietaoja R, Seppäla J (1997) J Appl Polym Sci 65:241CrossRefGoogle Scholar
  20. 20.
    Weiss RA, Ashish S, Willis CL, Pottick LA (1991) Polymer 32:1867CrossRefGoogle Scholar
  21. 21.
    Yarusso DJ, Cooper SL (1985) Polymer 26:371CrossRefGoogle Scholar
  22. 22.
    Weiss RA, Lefelar JA (1986) Polymer 27:3CrossRefGoogle Scholar
  23. 23.
    Storey R (1993) Polymer 34:4330CrossRefGoogle Scholar
  24. 24.
    Mountz D (1998) Polym Chem Polym Preprs 39:383Google Scholar
  25. 25.
    Martins CR, Ruggeri G, De Paoli MA (2003) J Braz Chem Soc 14:797CrossRefGoogle Scholar
  26. 26.
    Park B, Kong S, Kim Y, Jin N, Yong S (2005) Memburein 15:165Google Scholar
  27. 27.
    Mauritz K (2002) Polymer 43:4315, 5949CrossRefGoogle Scholar
  28. 28.
    Lim ST, Lee CH, Kwon YK, Choi HJ (2004) J Macromol Sci B Phys 43:577CrossRefGoogle Scholar
  29. 29.
    Ganguly A, DeSarkar M, Bhowmick AK (2006) J Appl Polym Sci 100:2040CrossRefGoogle Scholar
  30. 30.
    Ganguly A, DeSarkar M, Bhowmick AK (2007) J Polym Sci B Polym Phys 45:52CrossRefGoogle Scholar
  31. 31.
    Fowkes FM (1967) In: Patrick RL (ed) Treatise on adhesion and adhesives, vol 1. Marcel Dekker Inc., New YorkGoogle Scholar
  32. 32.
    Konar J, Sen AK, Bhowmik AK (1993) J Appl Polym Sci 48:1579CrossRefGoogle Scholar
  33. 33.
    Ghosh P, Chattopadhyay B, Sen AK (1998) Polymer 39:193CrossRefGoogle Scholar
  34. 34.
    Sen AK, Mukherjee B, Bhattcharya AS, De PP, Bhowmick AK (1992) Polym Degrad Stab 36:281CrossRefGoogle Scholar
  35. 35.
    Chen B, Evans JRG (2005) Philos Mag 85:1519CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations