Journal of Materials Science

, Volume 44, Issue 4, pp 1121–1126 | Cite as

Titanium diboride–nickel graded materials prepared by field-activated, pressure-assisted synthesis process

  • Shao Ping Chen
  • Qing Sen MengEmail author
  • W. Liu
  • Z. A. Munir


The formation of four-layered functionally graded material (FGM) samples of TiB2–Ni/TiB2–Ni3A + Ni/Ni3Al/Ni by field-activated, pressure-assisted synthesis process (FAPAS) was investigated. The microstructure, phase composition of the interfaces, and mechanical properties of the graded material were characterized. Elemental concentration profiles across interfaces between layers showed significant interdiffusion, indicative of formation of good bonds. The measured microhardness values of the sample increased monotonically from the nickel substrate to the surface layer (TiB2–Ni). The values ranged from about 360 to over 3500 HK over a distance of 2 mm. The results of this investigation demonstrate the feasibility of the FAPAS process for rapid formation of FGMs with good diffusion bonds.


Ni3Al Functionally Grade Material Titanium Diboride Knoop Hardness Nickel Substrate 



This study works were supported by the projects of the NSFC of China (50671070). The work was also partially supported by a grant from the Army Office of Research (ZAM).


  1. 1.
    Kieback B, Neubrand A, Riedel H (2003) Mater Sci Eng A 362:81CrossRefGoogle Scholar
  2. 2.
    Koizumi M (1997) Int J Self-Propag High-Temp Synth 6:295Google Scholar
  3. 3.
    Lee CS, Zhang XF, Thomas G (2001) Acta Mater 49:3775CrossRefGoogle Scholar
  4. 4.
    Zhu S, Wlosinski W, Xu B (2003) Mater Sci Forum 423–425:293Google Scholar
  5. 5.
    Anne G, Vanmeensel K, Vleugels J, Van der Biest O (2006) Key Eng Mater 314:213CrossRefGoogle Scholar
  6. 6.
    Muller E, Drasar C, Schilz J, Kaysser WA (2003) Mater Sci Eng A 362:17CrossRefGoogle Scholar
  7. 7.
    Meng QS, Chen SP, Munir ZA et al (2007) Mater Sci Eng A 456:332CrossRefGoogle Scholar
  8. 8.
    Meng QS, Chen SP, Munir ZA et al (2008) Key Eng Mater 368–372:1876CrossRefGoogle Scholar
  9. 9.
    Meng QS, Liu CR, Munir ZA et al (2008) J Mater Sci 43:5076. doi: CrossRefGoogle Scholar
  10. 10.
    Carrillo-Heian EM, Gibeling JC, Munir ZA, Paulino GH (2001) Ceram Trans 114:241Google Scholar
  11. 11.
    Reddy BSB, Das K, Das S (2007) J Mater Sci 42:9366. doi: CrossRefGoogle Scholar
  12. 12.
    Fu ZY, Liu JP, Zhang JY, Zhang QJ (2003) Key Eng Mater 249:105CrossRefGoogle Scholar
  13. 13.
    Roine A (1999) Outokumpu HSC chemistry for Windows: chemical reaction and equilibrium software with extensive thermochemical database. Version 4.0. Outokumpu Research Oy, Finland, ISBN 952-9507-05-4AGoogle Scholar
  14. 14.
    Heian EM, Munir ZA (2002) Ceram Trans 135:61Google Scholar
  15. 15.
    Carrillo-Heian EM, Carpenter RD, Paulino GH, Gibeling JC, Munir ZA (2001) J Am Ceram Soc 84:962CrossRefGoogle Scholar
  16. 16.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: CrossRefGoogle Scholar
  17. 17.
    Shi CX, Li HD, Zhou L (2004) The handbook of material science and engineering (in Chinese). Chemical Industry Press, Beijing, p 132Google Scholar
  18. 18.
    Lide DR, Kehiaian HV (1994) CRC handbook of thermophysical and physicalchemical date. CRC Press, Boca Raton, p 788, 208Google Scholar
  19. 19.
    Asoka-Kumar P, Alatalo M, Gosh VJ, Kruseman AC, Nielson B, Lynn KG (1996) Phys Rev Lett 77:2097CrossRefGoogle Scholar
  20. 20.
    Garay JE, Glade SC, Anselmi-tamburi U, Asoka-Kumar P, Munir ZA (2004) Appl Phys Lett 85:573CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shao Ping Chen
    • 1
  • Qing Sen Meng
    • 1
    Email author
  • W. Liu
    • 1
  • Z. A. Munir
    • 2
  1. 1.College of Material Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations