Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 680–684 | Cite as

Characterization of microstructural effects in a percussion laser-drilled powder metallurgy Ni-based superalloy

  • Jacquelynn K. M. Garofano
  • Harris L. Marcus
  • Mark AindowEmail author
Letter

In the combustion zone of gas turbine engines for aircraft, it is essential to maintain a large temperature differential between the combustion gases and the Ni superalloy components so that fuel is used efficiently while avoiding degradation of the turbine blades, rotors, casings, etc. This is typically achieved using a combination of thermal barrier coatings (TBCs) and cooling holes [1, 2, 3]. In the latter case, air from the compressor section is forced through internal channels in the components and this emerges from arrays of fine (<500 μm in diameter) cooling holes, establishing a thin air layer between the combustion gases and the TBC. Current generation engines can contain in excess of 106 cooling holes and most of these are produced by electro-discharge machining (EDM) or laser drilling. The use of laser drilling is increasing because it enables holes to be drilled through components with TBCs (e.g. [4, 5]); this is a significant advantage over EDM where the holes must be...

Keywords

Base Metal Laser Welding Recast Layer Laser Drilling Transmission Electron Microscopy Foil 

Notes

Acknowledgements

The authors would like to thank Robin Bright (University of Connecticut) and Dr. Paul Denney of the Connecticut Center for Advanced Technology (CCAT) for helpful discussions, Robert Wright of CCAT for assistance with producing the laser-drilled samples, and Pal O. Pedersen of FEI Company and Dr. Kai Song of Lehigh University for assistance with FIB sectioning. This material is based on research sponsored by CCAT’s National Center for Aerospace Leadership through Grant/Cooperative Agreement Number FA9550-06-1-0397 with the Air Force Office of Scientific Research. The U.S. government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. government.

References

  1. 1.
    Padture NP, Gell M, Jordan EH (2002) Science 296:280CrossRefGoogle Scholar
  2. 2.
    Bunker RS (2005) ASME J Heat Transf 127:441CrossRefGoogle Scholar
  3. 3.
    Bunker RS (2007) ASME J Turbomach 129:193CrossRefGoogle Scholar
  4. 4.
    McNally CA, Folkes J, Pashby IR (2004) Mater Sci Technol 20:805CrossRefGoogle Scholar
  5. 5.
    Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. SpringerGoogle Scholar
  6. 6.
    Dubey AK, Yadava V (2008) Int J Mach Tool Manuf 48:609CrossRefGoogle Scholar
  7. 7.
    Pandey ND, Shan HS, Mohandas T (2006) Mater Manuf Process 21:383CrossRefGoogle Scholar
  8. 8.
    Bandyopadhyay S, Sarin Sundar JK, Sundararajan G, Joshi SV (2002) J Mater Process Technol 127:83CrossRefGoogle Scholar
  9. 9.
    Steen WM (1991) Laser materials processing. SpringerGoogle Scholar
  10. 10.
    Lemmen HJK, Sudmeijer KJ, Richardson IM, van der Zwaag S (2007) J Mater Sci 42:5286. doi: https://doi.org/10.1007/s10853-006-0168-7 CrossRefGoogle Scholar
  11. 11.
    Mumtaz KA, Hopkinson N (2007) J Mater Sci 42:7647. doi: https://doi.org/10.1007/s10853-007-1661-3 CrossRefGoogle Scholar
  12. 12.
    Xu PQ, Gong HY, Xu GX et al (2008) J Mater Sci 43:1559. doi: https://doi.org/10.1007/s10853-007-2339-6 CrossRefGoogle Scholar
  13. 13.
    Feng Q, Picard YN, Liu H, Yalisove SM, Mourou G, Pollock TM (2005) Scr Mater 53:511CrossRefGoogle Scholar
  14. 14.
    Feng Q, Picard YN, McDonald JP, Van Rompay PA, Yalisove SM, Pollock TM (2006) Mater Sci Eng A 430:203CrossRefGoogle Scholar
  15. 15.
    Thawari G, Sarin Sundar JK, Sundararajan G, Joshi SV (2005) J Mater Process Technol 170:229CrossRefGoogle Scholar
  16. 16.
    Sezer HK, Li L, Schmidt M, Pinkerton AJ, Anderson B, Williams P (2006) Int J Mach Tool Manuf 46:1972CrossRefGoogle Scholar
  17. 17.
    Pandey ND, Shan HS, Bharti A (2006) Int J Adv Manuf Technol 28:863CrossRefGoogle Scholar
  18. 18.
    Bright R, Jacobs P, Aindow M, Marcus HL (2007) Proceedings of ICALEO 2007, p 1201Google Scholar
  19. 19.
    Garofano JKM, Marcus HL, Aindow M (2008) Microsc Microanal 14(S2):558CrossRefGoogle Scholar
  20. 20.
    Wusatowska-Sarnek AM, Ghosh G, Olson GB, Blackburn MJ, Aindow M (2003) J Mater Res 18:2653CrossRefGoogle Scholar
  21. 21.
    Wusatowska-Sarnek AM, Blackburn MJ, Aindow M (2003) Mater Sci Eng A 360:390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jacquelynn K. M. Garofano
    • 1
  • Harris L. Marcus
    • 1
  • Mark Aindow
    • 1
    Email author
  1. 1.Department of Chemical Materials and Biomolecular Engineering, Materials Science and Engineering Program, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations