Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 726–733 | Cite as

Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption for Fe3+ ion

  • Qunwei Tang
  • Xiaoming Sun
  • Qinghua Li
  • Jianming Lin
  • Jihuai Wu
Article

Abstract

A simple two-step aqueous polymerization method was introduced to synthesize polyacrylate/polyethylene glycol (PAC/PEG) interpenetrating network (IPN) hydrogel. The sorption behaviors and mechanism were studied by the sorption of PAC/PEG IPN hydrogel to Fe3+ ion from aqueous solution. The experimental results revealed that the adsoption amount of Fe3+ ion using swollen hydrogels was much higher than that using the dried composite, they were 75.69 mg/g and 14.25 mg/g, respectively. The parameters, such as neutralization degree, acrylic acid (AA) dosages and temperature, on the sorption amount of PAC/PEG IPN hydrogel were detailedly investigated.

Keywords

Acrylic Acid Fickian Diffusion Hydrogel Sample FeCl3 Solution Hydrogel Surface 

Notes

Acknowledgements

The authors acknowledge the joint support of the National High Technology Research and Development Program of China (863 Program) (No. SQ2008AA03Z2470974), the National Natural Science Foundation of China (Nos. 50572030, 50842027), and the Key Scientific Technology Program of Fujian, China (Nos. 2005HZ01–4 and 2007HZ0001–3).

References

  1. 1.
    Geever LM, Devine DM, Nugent MJD et al (2006) Eur Polym J 42:69CrossRefGoogle Scholar
  2. 2.
    Chirila TV, Morrison DA, Gridneva Z et al (2005) J Mater Sci 40:4987. doi: https://doi.org/10.1007/s10853-005-1423-z CrossRefGoogle Scholar
  3. 3.
    Rodríguez DE, Romero-García J, Ramírez-Vargas E et al (2006) Mater Lett 60:1390CrossRefGoogle Scholar
  4. 4.
    Tang QW, Lin JM, Wu JH et al (2007) Carbohydr Polym 67:332CrossRefGoogle Scholar
  5. 5.
    Jin SP, Liu MZ, Zhang F et al (2006) Polymer 47:1526CrossRefGoogle Scholar
  6. 6.
    Asoh T, Kaneko T, Matsusaki M et al (2006) J Control Release 110:387CrossRefGoogle Scholar
  7. 7.
    Zhang YX, Wu FP, Li MZ et al (2005) Polymer 46:7695CrossRefGoogle Scholar
  8. 8.
    Turner JS, Cheng YL (2004) J Memb Sci 240:19CrossRefGoogle Scholar
  9. 9.
    Geever LM, Nugent MJD, Higginbotham CL (2007) J Mater Sci 42:9845. doi: https://doi.org/10.1007/s10853-007-1814-4 CrossRefGoogle Scholar
  10. 10.
    Durme KV, Mele BV, Loos W et al (2005) Polymer 46:9851CrossRefGoogle Scholar
  11. 11.
    El-Sherbiny IM, Lins RJ, Abdel-Bary EM et al (2005) Eur Polym J 41:2584CrossRefGoogle Scholar
  12. 12.
    Xiao XC, Chu LY, Chen WM et al (2005) Polymer 46:3199CrossRefGoogle Scholar
  13. 13.
    Kaewpirom S, Boonsang S (2006) Eur Polym J 42:1609CrossRefGoogle Scholar
  14. 14.
    Şolpan D, Torun M (2005) Colloids Surf A 268:12CrossRefGoogle Scholar
  15. 15.
    Kim SJ, Yoon SG, Lee SM et al (2003) Sens Actuators B Chem 96:1CrossRefGoogle Scholar
  16. 16.
    Yang S, Aizenberg J (2005) Mater Today 8:40CrossRefGoogle Scholar
  17. 17.
    Chen G, Hoffman AS (1995) Nature 373:49CrossRefGoogle Scholar
  18. 18.
    Devine DM, Geever LM, Higginbotham CL (2005) J Mater Sci 40:3429. doi: https://doi.org/10.1007/s10853-005-0416-2 CrossRefGoogle Scholar
  19. 19.
    Molina MJ, Gómez-Antón MR, Rivas BL et al (2001) J Appl Polym Sci 79:1467CrossRefGoogle Scholar
  20. 20.
    Salih B, Pekel N, Güven O (2001) J Appl Polym Sci 82:446CrossRefGoogle Scholar
  21. 21.
    Wang CC, Chen CY, Chang CY (2002) J Appl Polym Sci 84:1353CrossRefGoogle Scholar
  22. 22.
    Hegazy EA, El-Rehim HAA, Khalifa NA (1999) Radiat Phys Chem 55:219CrossRefGoogle Scholar
  23. 23.
    El-Rehim HAA, Hegazy EA, Ali AE (2000) React Funct Polym 43:105CrossRefGoogle Scholar
  24. 24.
    Ali AE, Shawky HA, El-Rehim HAA et al (2003) Eur Polym J 39:2337CrossRefGoogle Scholar
  25. 25.
    Chauhan GS, Lal H (2003) Desalination 159:131CrossRefGoogle Scholar
  26. 26.
    Chauhan GS, Mahajan S (2002) J Appl Polym Sci 86:667CrossRefGoogle Scholar
  27. 27.
    Nastasović A, Jovanović S, Dordević D et al (2004) React Funct Polym 58:139CrossRefGoogle Scholar
  28. 28.
    Karadağ E, Üzüm ÖB, Saraydin D et al (2005) Int J Pharm 301:102CrossRefGoogle Scholar
  29. 29.
    Tao Y, Zhao JX, Wu CX (2005) Eur Polym J 41:1342CrossRefGoogle Scholar
  30. 30.
    Chiu HC, Hsiue T, Chen WY (2004) Polymer 45:1627CrossRefGoogle Scholar
  31. 31.
    Chen ZB, Liu MZ, Ma SM (2005) React Funct Polym 62:85CrossRefGoogle Scholar
  32. 32.
    Chauhan GS, Jaswal SC, Verma M (2006) Carbohydr Polym 66:435CrossRefGoogle Scholar
  33. 33.
    Zhang XZ, Wu DQ, Chu CCC (2004) Biomaterials 25:4719CrossRefGoogle Scholar
  34. 34.
    Chauhan GS, Guleria LK, Mahajan S (2001) Desalination 141:325CrossRefGoogle Scholar
  35. 35.
    Yan WL, Bai R (2005) Water Res 39:688CrossRefGoogle Scholar
  36. 36.
    Crank J (1985) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  37. 37.
    Ritger PL, Peppas NA (1987) J Control Release 5:23CrossRefGoogle Scholar
  38. 38.
    Ritger PL, Peppas NA (1987) J Control Release 5:37CrossRefGoogle Scholar
  39. 39.
    Enscore DJ, Hopfenberg HB, Stannett VT (1977) Polymer 18:793CrossRefGoogle Scholar
  40. 40.
    Wang JQ, Wu WH (2005) Eur Polym J 41:1143CrossRefGoogle Scholar
  41. 41.
    Flory PJ (1953) Principles of polymer chemistry. Cornel University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qunwei Tang
    • 1
  • Xiaoming Sun
    • 1
  • Qinghua Li
    • 1
  • Jianming Lin
    • 1
  • Jihuai Wu
    • 1
  1. 1.The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations