Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1449–1455 | Cite as

Fabrication and finite element modeling of ellipsoidal macro-shells

  • K. B. CarlisleEmail author
  • V. Brito
  • G. M. Gladysz
  • W. Ricci
  • M. Koopman
Syntactic and Composite Foams

Abstract

Millimeter-sized composite spherical shells have long been used in syntactic foams for deep sea buoyancy applications. Recent advances in the understanding of particle settling behavior have revealed the enhanced packing factor of non-spherical shapes, especially of ellipsoidal geometries. In order to realize the packing advantage of ellipsoidal composite shells in syntactic foams, the potential mechanical property penalty as compared with spherical shells must be understood. The current investigation used linear elastic finite element models of isostatic compression to elucidate the mechanical difference between volumetrically identical spherical and ellipsoidal macro-shells. Experimental fabrication of glass-fiber/epoxy composite ellipsoidal macro-shells was also performed in order to verify the viability of the current industrial production process for non-spherical geometries. The relevant trends of increasing predicted stresses with increased deviation from sphericity are discussed, and their implications for syntactic foam properties and applications are discussed.

Keywords

Hydrostatic Pressure Spherical Shell Packing Fraction Syntactic Foam Oblate Ellipsoid 

References

  1. 1.
    Donev A, Cisse I, Sachs D, Variano E, Stillinger F, Connelley R, Torquato S, Chaikin P (2004) Science 303:990CrossRefGoogle Scholar
  2. 2.
    Delaney G, Weaire D, Hutzler S, Murphy S (2005) Philos Mag Lett 85:89CrossRefGoogle Scholar
  3. 3.
    McGeary (1961) J Am Ceram Soc 44:413CrossRefGoogle Scholar
  4. 4.
    DeRuntz J, Hoffman O (1969) J Appl Mech 36:551CrossRefGoogle Scholar
  5. 5.
    Okuno K, Woodhams R (1974) J Cell Plast 10:237CrossRefGoogle Scholar
  6. 6.
    Whitaker T (1980) In: Proceedings of 16th joint propulsion conference, Hartford, CTGoogle Scholar
  7. 7.
    Gupta N, Woldesenbet E (2003) Compos Struct 61:311CrossRefGoogle Scholar
  8. 8.
    Wilcox D, Berg M (1995) Mater Res Soc Symp Proc 372:3CrossRefGoogle Scholar
  9. 9.
    Bourlinos A, Boukos N, Petridis D (2002) Adv Mater 14:21CrossRefGoogle Scholar
  10. 10.
    Kim M, Bon Yoon S, Sohn K, Kim J, Shin C, Hyeon T, Yu J (2003) Microporous Mesoporous Mater 63:1CrossRefGoogle Scholar
  11. 11.
    Mallick PK (ed) (1997) Composites engineering handbook. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Young W, Budynas R (2002) Roark’s formulas for stress and strain. McGraw Hill, New York, p 585, 597, 737Google Scholar
  13. 13.
    Carlisle K, Lewis M, Chawla K, Koopman M, Gladysz M (2007) Acta Mater 55:2301CrossRefGoogle Scholar
  14. 14.
    Meyers M, Chawla K (1999) Mechanical behavior of materials. Prentice Hall, Upper Saddle RiverGoogle Scholar
  15. 15.
    Hertzberg R (1996) Deformation and fracture mechanics of engineering materials. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. B. Carlisle
    • 1
    Email author
  • V. Brito
    • 1
  • G. M. Gladysz
    • 1
  • W. Ricci
    • 1
  • M. Koopman
    • 2
  1. 1.Trelleborg Emerson and Cuming, Inc.MansfieldUSA
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations