Journal of Materials Science

, Volume 44, Issue 3, pp 770–777 | Cite as

Growth of massive cementite layers; thermodynamic parameters and kinetics

  • Marc Nikolussi
  • Andreas LeineweberEmail author
  • Eric Jan Mittemeijer


Massive, pure cementite layers were grown on ferrite substrates by nitrocarburising in a dedicated NH3/H2/CO/N2 containing gas atmosphere at temperatures in the range of 783–843 K. From the parabolic layer-growth constants, an “apparent” activation energy for cementite-layer growth of 109 ± 12 kJ/mol was obtained. This “apparent” activation energy can be subdivided into a positive contribution due to the activation energy for (tracer) diffusion of carbon in cementite and a negative contribution due to the temperature dependence of the difference of the carbon activity in cementite at the surface and at the interface cementite/ferrite.


Carbon Activity Cementite Compound Layer Iron Nitride Heterogeneous Water 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Toyota Jidoshi KK, Toyota, Aichi, JP (Nonoyama H, Fukuizumi T, Morita A) Japanese Patent P58-122201, 5 July 1983Google Scholar
  2. 2.
    Mizubayashi H, Li SJ, Yumoto H, Shimotomai M (1999) Script Mater 40:773CrossRefGoogle Scholar
  3. 3.
    Grabke HJ (2003) Mater Corr 54:736CrossRefGoogle Scholar
  4. 4.
    Schneider A, Grabke HJ (2003) Mater Corr 54:793CrossRefGoogle Scholar
  5. 5.
    Umemoto M, Todaka Y, Takahashi T, Li P, Tokumiya R, Tsuchiya K (2003) J Metastat Nanocryst Mater 15:607Google Scholar
  6. 6.
    Gressmann T, Nikolussi M, Leineweber A, Mittemeijer EJ (2006) Script Mat 55:723CrossRefGoogle Scholar
  7. 7.
    Somers MAJ (2000) Heat Treat Met 27:92Google Scholar
  8. 8.
    Liedtke D, Baudis U, Boßlet J, Huchel U, Klümper-Westkamp H, Lerche W, Spieß H-J (2006) Wärmebehandlung von Eisenwerkstoffen—Nitrieren und Nitrocarburieren. Expert-Verlag, Renningen MalmsheimGoogle Scholar
  9. 9.
    Unterweiser PM, Gray AG (eds) (1977) Source book on nitriding. ASM, Metals Park, OHGoogle Scholar
  10. 10.
    Colijn PF, Mittemeijer EJ, Rozendaal HCF (1983) Z Metallkd 74:620Google Scholar
  11. 11.
    Somers MAJ, Mittemeijer EJ (1987) Surf Eng 3:123CrossRefGoogle Scholar
  12. 12.
    Mittemeijer EJ (1983) J Heat Treat 3:114CrossRefGoogle Scholar
  13. 13.
    Ozturk B, Fearing VL, Ruth JA, Simkovich G (1982) Metall Trans A 13A:1871CrossRefGoogle Scholar
  14. 14.
    Ozturk B, Fearing VL, Ruth JA, Simkovich G (1984) Solid State Ionics 12:145CrossRefGoogle Scholar
  15. 15.
    Schneider A, Inden G, Grabke HJ (2000) In: Rühle M, Gleiter H (eds) Interface controlled materials (Euromat 99). Weinheim, Wiley-VCHGoogle Scholar
  16. 16.
    Schneider A (2002) Corr Sci 44:2353CrossRefGoogle Scholar
  17. 17.
    Arabczyk W, Konicki W, Narkiewicz U, Jasińska I, Kałucki K (2004) Appl Catal A 266:135CrossRefGoogle Scholar
  18. 18.
    Hillert M, Höglund L, Ågren J (2005) J Appl Phys 98:053511CrossRefGoogle Scholar
  19. 19.
    Schneider A, Inden G (2007) Comp Coupl Phase Diagr Thermochem 31:141CrossRefGoogle Scholar
  20. 20.
    Chatterjee-Fischer R, Bodenhagen R, Eysell F-W, Hoffmann R, Liedtke D, Mallener H, Rembges W, Schreiner A, Welker G (1995) Wärmebehandlung von Eisenwerkstoffen. Expert-Verlag, Renningen-MalmsheimGoogle Scholar
  21. 21.
    Wells A (1985) J Mater Sci 20:2439. doi: CrossRefGoogle Scholar
  22. 22.
    Petzow G (1999) Metallographic etching. ASM International, Materials Park, OHGoogle Scholar
  23. 23.
    Schwerdtfeger K, Grieveson P, Turkdogan ET (1969) Trans TMS AIME 245:2461Google Scholar
  24. 24.
    Somers MAJ, Mittemeijer EJ (1995) Metall Mater Trans A 26A:57CrossRefGoogle Scholar
  25. 25.
    Middendorf C, Mader W (2003) Z Metallkd 94:333CrossRefGoogle Scholar
  26. 26.
    Mittemeijer EJ, Somers MAJ (1997) Surf Eng 13:483CrossRefGoogle Scholar
  27. 27.
    Wagner C (1951) Atom movements. ASM, Cleveland, OHGoogle Scholar
  28. 28.
    Nikolussi M, Leineweber A, Mittemeijer EJ (2008) Acta Mat 56:5837CrossRefGoogle Scholar
  29. 29.
    Wallace TC (1968) In: Hausner H, Bowman MG (eds) Fundamentals of refractory compounds. Plenum Press, New YorkGoogle Scholar
  30. 30.
    Lehrer E (1930) Z Elektrochem 36:383Google Scholar
  31. 31.
    Mittemeijer EJ, Slycke JT (1996) Surf Eng 12:152CrossRefGoogle Scholar
  32. 32.
    Grabke HJ (1975) Arch Eisenhüttenw 46:75CrossRefGoogle Scholar
  33. 33.
    Kunze J (1990) Nitrogen and carbon in iron and steel. Akademie-Verlag, BerlinGoogle Scholar

Copyright information

© The Author(s) 2008

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Marc Nikolussi
    • 1
  • Andreas Leineweber
    • 1
    Email author
  • Eric Jan Mittemeijer
    • 1
  1. 1.Max Planck Institute for Metals ResearchStuttgartGermany

Personalised recommendations