Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 734–744 | Cite as

Anisotropic thermal conductivity of three-layer laminated carbon-graphite composites from carbonized wood

  • Joko Sulistyo
  • Toshimitsu HataEmail author
  • Masashi Fujisawa
  • Kozo Hashimoto
  • Yuji Imamura
  • Tamami Kawasaki
Article

Abstract

Composites with characteristics of anisotropic thermal conductivity for thermal management in Solar Power Satellite (SPS), to discharge the heat that was generated when solar energy was not converted to electricity, were developed by alternating layers of laminated graphite and carbonized wood. The effects of the weight fraction of carbonized wood, particle size, interlayer interfaces, and environment temperature on the thermal conductivity and the ratio of thermal conductivity between horizontal and vertical directions (H/V ratio) to the plain surface of samples were discussed. The thermal conductivities of carbon–graphite (C/G) composites were measured using the laser flash method. Laminated C/G composites improved the anisotropic thermal conductivity. The highest H/V ratio of 10.17 was obtained at 10 wt% of carbonized wood. Particle size and interlayer interfaces were found to affect the anisotropic thermal conductivity. The thermal conductivity of C/G composites increased with increasing temperature from 25 °C to 150 °C.

Keywords

Graphite Thermal Conductivity Carbonize Wood Plain Surface Thermal Conductive Material 

Notes

Acknowledgement

This research was carried out with support from a Grant-in-Aid for Scientific Research (17656309) from the Ministry of Education, Science, and Culture of Japan.

References

  1. 1.
    Qiu H, Song Y, Liu L, Zhai G, Shi J (2003) Carbon 41:973CrossRefGoogle Scholar
  2. 2.
    Fitzer E (1983) Carbon 25:163CrossRefGoogle Scholar
  3. 3.
    Chung DDL (2002) J Mater Sci 37:1475. doi: https://doi.org/10.1023/A:1014915307738 CrossRefGoogle Scholar
  4. 4.
    Nagano H, Ohnishi A, Nagasaka Y, Mori YH, Nagashima A (2006) Int J Thermophys 27:114CrossRefGoogle Scholar
  5. 5.
    Slack GA (1962) Phys Rev 127:694CrossRefGoogle Scholar
  6. 6.
    Null MR, Lozier WW, Moore AW (1973) Carbon 11:81CrossRefGoogle Scholar
  7. 7.
    Desai S, Rand B (2007) In: Proceeding international conference on carbon 2007, SeattleGoogle Scholar
  8. 8.
    Lutcov AI, Volga VI, Dymov BK (1970) Carbon 8:753CrossRefGoogle Scholar
  9. 9.
    Ishimaru K, Hata T, Bronsveld P, Imamura Y (2007) J Mater Sci 42:2662. doi: https://doi.org/10.1007/s10853-006-1361-4 CrossRefGoogle Scholar
  10. 10.
    Ishihara S (1996) In: Salamone JC (ed) Polymeric material encyclopedia 2. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Kumar M, Gupta RC (1993) J Mater Sci 28:440. doi: https://doi.org/10.1007/BF00357821 CrossRefGoogle Scholar
  12. 12.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J Appl Phys 32:1679CrossRefGoogle Scholar
  13. 13.
    Krupa I, Chodak I (2001) Eur Polym J 37:2159CrossRefGoogle Scholar
  14. 14.
    Hongsheng Z, Tongxiang L, Jie Z, Ziqiang L, Chunhe T (2006) Rare Met 25:347CrossRefGoogle Scholar
  15. 15.
    Hoshi S, Kojima A, Goto M (2000) Carbon 38:1879CrossRefGoogle Scholar
  16. 16.
    Subyakto , Hata T, Kawai S, Imamura Y, Ide I (2000) J Wood Sci 46:16CrossRefGoogle Scholar
  17. 17.
    Bigg DM (1986) Polym Compos 7:125CrossRefGoogle Scholar
  18. 18.
    Ragland KW, Aerts DJ, Baker AJ (1991) Bioresour Techno 37:161CrossRefGoogle Scholar
  19. 19.
    Ravichandran KS, An K, Dutton RE, Semiatin SL (1999) J Am Ceram Soc 82:673CrossRefGoogle Scholar
  20. 20.
    Taylor R (2000) In: Kelly A, Zweben C (eds in chief), Warren R (ed) Comprehensive composite materials, vol 4. ElsevierGoogle Scholar
  21. 21.
    Skorokhod VV (2003) Powder Metall and Metal Ceram 42:437CrossRefGoogle Scholar
  22. 22.
    Ervin VJ, Klett JW, Mundt CM (1999) J Mater Sci 34:3545. doi: https://doi.org/10.1023/A:1004674308487 CrossRefGoogle Scholar
  23. 23.
    Radhakrishna MC, Doerr HJ, Deshpandey CV, Bunshah RF (1989) Surf Coat Techno 39/40:153CrossRefGoogle Scholar
  24. 24.
    Absi J, Smith DS, Grandjean S, Berjonnaux J (2005) J Eur Ceram Soc 25:367Google Scholar
  25. 25.
    Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S (2006) Carbon 44:488CrossRefGoogle Scholar
  26. 26.
    Gupta M, Yang J, Roy C (2003) Fuel 82:919CrossRefGoogle Scholar
  27. 27.
    Kumar S, Rath T, Mahaling RN, Reddy CS, Das CK, Pandey KN, Srivastava RB, Yadaw SB (2007) Mater Sci Eng B 141:61CrossRefGoogle Scholar
  28. 28.
    Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126CrossRefGoogle Scholar
  29. 29.
    Anggoni K (1993) Carbon 31:537CrossRefGoogle Scholar
  30. 30.
    Nikiel L, Jagodzinski PW (1993) Carbon 31:1313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joko Sulistyo
    • 1
  • Toshimitsu Hata
    • 1
  • Masashi Fujisawa
    • 2
  • Kozo Hashimoto
    • 3
  • Yuji Imamura
    • 1
  • Tamami Kawasaki
    • 1
  1. 1.Laboratory of Innovative Humano-habitability, Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan
  2. 2.Institute of Wood TechnologyAkita Prefectural UniversityAkitaJapan
  3. 3.Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan

Personalised recommendations