Advertisement

Journal of Materials Science

, Volume 44, Issue 4, pp 1063–1068 | Cite as

Formation of feathery grains with the application of a static magnetic field during direct chill casting of Al-9.8wt%Zn alloy

  • Lei Li
  • Yudong Zhang
  • Claude Esling
  • Zhihao Zhao
  • Yubo Zuo
  • Haitao Zhang
  • Jianzhong Cui
Article

Abstract

Effect of a 0.2-T static magnetic field on the microstructure of a direct chill cast Al-9.8wt%Zn alloy slab was investigated. The static magnetic field transferred the microstructure from a mixture of equiaxed and columnar grains with the primary trunks growing in <100> directions to twinned lamellar feathery grains with the primary and secondary arms growing in <110> directions. The application of the static magnetic field results in the reduction of the heat discharge and solute mixing capacity through a damping effect on convection and thus a delay of the melt transformation to solid and a request to reduce the liquid/solid interface energy through reducing the interface area due to the loss of undercooling. The delay and the request account for the growth direction change and the formation of lamellas. The difference between the Al and Zn atomic radii and the related incoming flow facilitate the formation of the twins.

Keywords

Pole Figure Static Magnetic Field Direct Chill Casting Hartman Number Wavy Boundary 

Notes

Acknowledgements

This study was financially supported by the Key Fundamental Program of China [(973), Grant No. 2005CB623707], the Cultivation Fund of 111 (Grant No. 704015), the national Natural Science Foundation (Grant No. 50674030) and the CNRS-PICS (No. 4164). The first author also gratefully acknowledges the CHINA SCHOLARSHIP COUNCIL for the Chinese-French cotutelle Ph.D. Grant.

References

  1. 1.
    Henry S, Jarry P, Rappaz M (1998) Metall Mater Trans A 29:2807CrossRefGoogle Scholar
  2. 2.
    Henry S, Gruen G-U, Rappaz M (2004) Metall Mater Trans A 35:2495CrossRefGoogle Scholar
  3. 3.
    Turchin AN, Zuijderwijk M, Pool J et al (2007) Acta Mater 55:3795CrossRefGoogle Scholar
  4. 4.
    Eady JA, Hogan LM (1974) J Cryst Growth 23:129CrossRefGoogle Scholar
  5. 5.
    Granger DA, Liu J (1983) JOM 35:54CrossRefGoogle Scholar
  6. 6.
    Anada H, Tada S, Koshimoto K, Hori S (1991) J Jpn Inst Light Met 41:497CrossRefGoogle Scholar
  7. 7.
    Sheikh-Ali AD, Molodov DA, Garmestani H (2006) Rev Adv Mater Sci 11:167Google Scholar
  8. 8.
    Gao MC, Bennett TA, Rollett AD, Laughlin DE (2006) J Phys D Appl Phys 39:2890CrossRefGoogle Scholar
  9. 9.
    Beaugnon E, Rivoirard S, Garcin T, Bouaziz O (2006) In: Proceedings of the 5th international symposium on electromagnetic processing of materials, Sendai, Japan, p 604Google Scholar
  10. 10.
    Rivoirard S, Garcin T, Gaucherand F, Bouaziz O, Beaugnon E (2006) J Phys Conf Ser 51:541CrossRefGoogle Scholar
  11. 11.
    Nakamichi S, Tsurekawa S, Morizono Y, Watanabe T, Nishida M, Chiba A (2005) J Mater Sci 40:3191. doi: https://doi.org/10.1007/s10853-005-2683-3 CrossRefGoogle Scholar
  12. 12.
    Li X, Fautrelle Y, Ren ZM (2007) J Cryst Growth 306:187CrossRefGoogle Scholar
  13. 13.
    Li X, Fautrelle Y, Ren ZM (2007) Acta Mater 55:5333CrossRefGoogle Scholar
  14. 14.
    Wang Q, Wang CJ, Liu T, Wang K, He JC (2007) J Mater Sci 42(24):10000. doi: https://doi.org/10.1007/s10853-007-2050-7 CrossRefGoogle Scholar
  15. 15.
    Ban CY, Cui JZ, Han Y, Ba QX (2006) J Mater Sci 41(10):3113. doi: https://doi.org/10.1007/s10853-006-5243-6 CrossRefGoogle Scholar
  16. 16.
    Cramer A, Eckert S, Galindo V, Gerbeth G, Willers B, Witke W (2004) J Mater Sci 39(24):7285. doi: https://doi.org/10.1023/B:JMSC.0000048743.43663.e9 CrossRefGoogle Scholar
  17. 17.
    Yang S, Liu WJ, Jia J (2001) J Mater Sci 36(22):5351. doi: https://doi.org/10.1023/A:1012467817033 CrossRefGoogle Scholar
  18. 18.
    Zuo L, Watanabe T, Esling C (1994) Z Metallkde 85:554Google Scholar
  19. 19.
    Rollett AD (2002) In: Proceedings of the 8th international conference on aluminum and its alloys (ICAA8)Google Scholar
  20. 20.
    Hunt JD, Jackson KA (1967) Trans Met Soc AIME 239:864Google Scholar
  21. 21.
    O’Hara S, Tiller WA (1967) Trans Metall Soc AIME 239:497Google Scholar
  22. 22.
    Lehmann P, Moreau R, Camel D, Bolcato R (1998) Acta Mater 46:4067CrossRefGoogle Scholar
  23. 23.
    Gillon P (2000) Mater Sci Eng A 287:146CrossRefGoogle Scholar
  24. 24.
    Tewari SN, Shah R, Song H (1994) Metall Mater Trans A 25:1535CrossRefGoogle Scholar
  25. 25.
    Carruthers JR (1977) In: Wilcox WR, Lefever RA (eds) Preparation and properties of solid state materials, vol 3. Marcel Dekker, New York, p 1Google Scholar
  26. 26.
    International Handbook Committee (1961) Metals handbook. ASM, Metals Park, OH, vol 1, p 1064Google Scholar
  27. 27.
    Assael MJ, Kakosimos K, Banish RM, Brillo J, Egry I, Brooks R, Quested PN, Mills KC, Nagashima A, Sato Y, Wakeham WA (2006) J Phys Chem Ref Data 35:299CrossRefGoogle Scholar
  28. 28.
    Mondolfo LF (1976) Aluminum alloys: structure and properties. Butterworths, LondonGoogle Scholar
  29. 29.
    Hunt JCR (1965) J Fluid Mech 21:577CrossRefGoogle Scholar
  30. 30.
    Szabo G, Juhaz Z, Paitz J, Poltl J (1986) J Cryst Growth 78:558CrossRefGoogle Scholar
  31. 31.
    Haxhimali T, Karma A, Gonzales F, Rappaz M (2006) Nat Mater 5:660CrossRefGoogle Scholar
  32. 32.
    Cantor B, Vogel A (1977) J Cryst Growth 41:109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lei Li
    • 1
    • 2
  • Yudong Zhang
    • 1
    • 2
  • Claude Esling
    • 2
  • Zhihao Zhao
    • 1
  • Yubo Zuo
    • 1
  • Haitao Zhang
    • 1
  • Jianzhong Cui
    • 1
  1. 1.Key Laboratory of Electromagnetic Processing of Materials, Ministry of EducationNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.LETAM, CNRS-UMR 7078University of MetzMetzFrance

Personalised recommendations