Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 889–896 | Cite as

The synthesis and characterisation of grafted random styrene butadiene for biomedical applications

  • James E. Kennedy
  • Declan M. Devine
  • John G. Lyons
  • Luke M. Geever
  • Clement L. HigginbothamEmail author
Article

Abstract

The work undertaken investigates the spectral, thermal and surface characteristics of a random styrene butadiene rubber (SBR) with monomeric graft(s) of acrylic acid (AA), N-vinyl-2-pyrrolidinone (NVP) or N-isopropylacrylamide (NIPAAm) synthesised using UV polymerisation. The grafted materials were characterised by differential scanning calorimetry (DSC), modulated differential scanning calorimetry (MDSC), attenuated total reflectance infrared Fourier transform spectrometry (ATR-FTIR) and atomic force microscopy (AFM). Thermograph analysis has shown an endothermic transition occurring at ~75 °C for all random SB-g-NVP copolymers, whereas the Tg value for random SB copolymer was found at 60 °C, thus suggesting that a chemical reaction between styrene and NVP had occurred. Similar thermal profiles to that of random SB-g-NVP copolymers were evident when random SB was UV polymerised with AA. When NIPAAm was grafted onto random SB, a notable exothermic transition was evident in all samples tested using DSC. It was established using MDSC that this exothermic transition was caused by the breakdown of crosslinks as a result of UV polymerisation.

Keywords

Differential Scanning Calorimetry Acrylic Acid Acrylonitrile Butadiene Styrene EGDMA Styrene Butadiene Rubber 

Notes

Acknowledgement

This work has been funded by both the National Development Plan and Enterprise Ireland.

References

  1. 1.
    Rao M, Rao R (1999) Polym Plast Technol Eng 38(5):967CrossRefGoogle Scholar
  2. 2.
    Sheng J, Lu X, Yao K (1990) J Macromol Sci Chem 27(2):167CrossRefGoogle Scholar
  3. 3.
    Huang N, Sundberg D (1995) J Polym Sci A Polym Chem 33:2533CrossRefGoogle Scholar
  4. 4.
    Huang N, Sundberg D (1995) J Polym Sci A Polym Chem 33:2551CrossRefGoogle Scholar
  5. 5.
    Huang N, Sundberg D (1995) J Polym Sci A Polym Chem 33:2571CrossRefGoogle Scholar
  6. 6.
    Huang N, Sundberg D (1995) J Polym Sci A Polym Chem 33:2587CrossRefGoogle Scholar
  7. 7.
    Mrrov Z, Velichkova R (1993) Eur Polym J 29(4):597CrossRefGoogle Scholar
  8. 8.
    Aimin Z, Chao L (2003) Eur Polym J 39:1291CrossRefGoogle Scholar
  9. 9.
    Lee W, Chen Y (2001) J Appl Polym Sci 82:2641CrossRefGoogle Scholar
  10. 10.
    Devine D, Higginbotham C (2003) Polymer 44:7851CrossRefGoogle Scholar
  11. 11.
    Can H, Denizli B, Kavlak S, Guner A (2005) Radiat Phys Chem 72:703CrossRefGoogle Scholar
  12. 12.
    Allen N, Edge M, Wilkinson A, Liauw C, Mourelatou D, Barrio J, Martinz-Zaporta M (2001) Polym Degrad Stab 71:113CrossRefGoogle Scholar
  13. 13.
    Allen N, Barcelona A, Edge M, Wilkinson A, Merchan C, Ruiz V, Quiteria S (2004) Polym Degrad Stab 86:11CrossRefGoogle Scholar
  14. 14.
    Romero-Sanchez M, Pastor-Blas M, Martin-Martinez J (2005) Int J Adhes Adhes 25(1):19CrossRefGoogle Scholar
  15. 15.
    Horak D, Krystufek M, Spevacek J (2000) J Polym Sci A Polym Chem 38:653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James E. Kennedy
    • 1
  • Declan M. Devine
    • 1
  • John G. Lyons
    • 1
  • Luke M. Geever
    • 1
  • Clement L. Higginbotham
    • 1
    Email author
  1. 1.Centre for Biopolymer and Biomolecular ResearchAthlone Institute of TechnologyWestmeathIreland

Personalised recommendations