Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 374–378 | Cite as

Selective oxidation of benzyl alcohol using RuHAp-containing sheet composites

  • Shuji FukahoriEmail author
  • Masaaki Morikawa
  • Junichirou Ninomiya
Article

Abstract

Ru-containing hydroxyapatite (RuHAp) powder was successfully impregnated into sheet composites using a papermaking technique, and its catalytic efficiency was investigated. The RuHAp powder was homogeneously scattered over the fiber-mix networks that had been tailored within the catalyst sheet. RuHAp-containing sheets demonstrated superior performance to RuHAp beads for the selective oxidation of benzyl alcohol to benzaldehyde in a batch reaction process and the efficiency was equivalent to that of RuHAp powder. Catalytic performance was also evaluated in a continuous fixed-bed column reactor and RuHAp sheets showed higher oxidation efficiency than both RuHAp powder and beads. The porous structure of composites seemed to improve the effective transport of benzyl alcohol to RuHAp surfaces which were immobilized within the sheets, resulting in enhanced catalytic performance.

Keywords

Benzaldehyde Catalytic Performance Benzyl Alcohol Catalytic Efficiency Selective Oxidation 

Notes

Acknowledgement

This research was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

References

  1. 1.
    Zhao H, Li A, Gu J, Xiong G, Brunner H (1999) J Mater Sci 34:2987. doi: https://doi.org/10.1023/A:1004616309085 CrossRefGoogle Scholar
  2. 2.
    Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K (2000) J Am Chem Soc 122:7144CrossRefGoogle Scholar
  3. 3.
    Opre Z, Grunwaltd JD, Maciejewski M, Ferri D, Mallat T, Baiker A (2005) J Catal 230:406CrossRefGoogle Scholar
  4. 4.
    Kaneda K, Ebitani K, Mizugaki T, Mori K (2006) Bull Chem Soc Jpn 79:981CrossRefGoogle Scholar
  5. 5.
    Trakarnpruk W, Dumrongpong P (2006) J Mater Sci 41:3001. doi: https://doi.org/10.1007/s10853-006-6767-5 CrossRefGoogle Scholar
  6. 6.
    Dehury SK, Hariharakrishnan VS (2007) Tetrahedron Lett 48:2493CrossRefGoogle Scholar
  7. 7.
    Boukha Z, Kacimi M, Pereira MFR, Faria JL, Figueiredo JL, Ziyad M (2007) Appl Catal A Gen 317:299CrossRefGoogle Scholar
  8. 8.
    Purnama H, Ressler T, Jentoft RE, Soerijanto H, Schlögl R, Schomäcker R (2004) Appl Catal A Gen 259:83CrossRefGoogle Scholar
  9. 9.
    Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Environ Sci Technol 37:1048CrossRefGoogle Scholar
  10. 10.
    Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Appl Catal B Environ 46:453CrossRefGoogle Scholar
  11. 11.
    Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Appl Catal A Gen 300:155CrossRefGoogle Scholar
  12. 12.
    Fukahori S, Koga H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Appl Catal A Gen 310:138CrossRefGoogle Scholar
  13. 13.
    Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Int J Hydrogen Energy 33:1661CrossRefGoogle Scholar
  14. 14.
    Mukai S, Nishihara H, Tamon H (2003) Micropor Mesopor Mater 63:43CrossRefGoogle Scholar
  15. 15.
    Takahashi R, Sato S, Sodesawa T, Arai K, Yabuki M (2005) J Catal 229:24CrossRefGoogle Scholar
  16. 16.
    Groppi G, Airoldi G, Cristiani C, Tronconi E (2000) Catal Today 60:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shuji Fukahori
    • 1
    Email author
  • Masaaki Morikawa
    • 1
  • Junichirou Ninomiya
    • 1
  1. 1.Paper Technology CenterEhime Institute of Industrial Technology CenterEhimeJapan

Personalised recommendations