Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 414–421 | Cite as

Compaction of different boron carbide powders using uniaxial die compaction and combustion driven compaction

  • Xiaojing Zhu
  • Kathy LuEmail author
  • Karthik Nagarathnam
Article

Abstract

Compaction of pure B4C and Ni2B nanolayer coated B4C was studied using uniaxial die compaction and combustion driven compaction techniques. Effects of different compaction techniques and the Ni2B nanolayer around B4C particle surfaces on green B4C sample characteristics are the focus of this study. The combustion driven compaction process yields much higher green density and strength than the uniaxial die compaction process. For the samples obtained from the same compaction technique, the Ni2B nanolayer on individual B4C particle surfaces improves the green density and strength of the B4C powder compacts. For the combustion driven compaction process, optical images show micro-cracks on the surface of pure B4C compact while crack-free surface is observed for Ni2B nanolayer coated B4C sample. Scanning electron microscopy analysis shows the same trend as the green density and strength measurements. Combustion driven compaction diagram for hard and brittle materials such as B4C is discussed.

Keywords

Compaction Compaction Pressure Force Chain Ni2B Compaction Stage 

Notes

Acknowledgement

The authors acknowledge the financial support from National Science Foundation under grant No. DMI-0620621.

References

  1. 1.
    Schneider SJ (1991) Ceramics and glasses-engineering materials handbook. ASM International, Materials Park, OHGoogle Scholar
  2. 2.
    Zhao H, Hiragushi K, Mizota Y (2003) J Eur Ceram Soc 23:1485CrossRefGoogle Scholar
  3. 3.
    Deng JX, Zhou J, Feng YH, Ding ZL (2002) Ceram Int 28(4):425CrossRefGoogle Scholar
  4. 4.
    Zhen Y, Li A, Yin Y, Shi R, Liu Y (2004) Mater Res Bull 39:1615CrossRefGoogle Scholar
  5. 5.
    Yamada S, Sakaguchi S, Hirao K, Yamauchi Y, Kanzaki S (2003) J Ceram Soc Jpn 111(1):53CrossRefGoogle Scholar
  6. 6.
    Skorokhod VV, Krstic VD (2000) Powder Metall Metal Ceram 39(7–8):414CrossRefGoogle Scholar
  7. 7.
    Lee H, Speyer RF (2003) J Am Ceram Soc 86(9):1468CrossRefGoogle Scholar
  8. 8.
    Roy TK, Subramanian C, Suri AK (2006) Ceram Int 32(3):227CrossRefGoogle Scholar
  9. 9.
    Gonzalez EJ, Hockey B, Piermarini GJ (1996) Mater Manuf Process 11(6):951CrossRefGoogle Scholar
  10. 10.
    Gao L, Li W, Wang HZ, Zhou JX, Chao ZJ, Zai QZ (2001) J Eur Ceram Soc 21:135CrossRefGoogle Scholar
  11. 11.
    Serdyuk GG, Sakhnenko AV, Svistun LI (2000) Powder Metall Metal Ceram 39(9–10):514CrossRefGoogle Scholar
  12. 12.
    Raminga TP, van Zyl WE, Carton EP, Verweij H (2004) Ceram Int 30:629CrossRefGoogle Scholar
  13. 13.
    Jaramillo D, Hinojosa G, Hallen JM, Balmori H, Inal OT (1997) Key Eng Mater 127(1–2):977Google Scholar
  14. 14.
    Venz GJ, Killen PD, Page NW (2003) J Mater Sci 38:2935. doi: https://doi.org/10.1023/A:1024417426146 CrossRefGoogle Scholar
  15. 15.
    Rabe T, Prummer R, Wasche R (1997) Mater Sci Forum 235–238(1–2):285Google Scholar
  16. 16.
    Sadangi RK, Shukla V, Kear BH (2005) Int J Refract Metal Hard Mater 23(4–6):363CrossRefGoogle Scholar
  17. 17.
    Nagarathnam K, Trostle D, Kruczynski D, Maeesy D (2004) Proc Int Conf Powder Metall Part Mater. Chicago, IL, pp 1–15, 13–17 June 2004Google Scholar
  18. 18.
    Nagarathnam K, Renner A, Trostle D, Kruczynski D, Maeesy D (2007) Int Conf Powder Metall Part Mater. Denver, CO, 13–17 May 2007Google Scholar
  19. 19.
    Witherspoon FD, Massey DW, Mozhi TA, Kruczynski D, David L, Ryan JM (2004) Dynamic consolidation of powders using a pulsed energy source, Patent 6767505. Utron IncGoogle Scholar
  20. 20.
    Sachan M, Majetich SA (2005) IEEE Trans Magn 41(10):3874CrossRefGoogle Scholar
  21. 21.
    Kruczynski DL, Ryan JM, Trostle DS, Witherspoon FD, Massey DW (2002) Proc Int Conf Powder Metall Part Mater. Orlando, FL, 16–21 June 2002Google Scholar
  22. 22.
    Zhu XJ, Dong HY, Lu K (2008) Surf Coat Technol 202:2927CrossRefGoogle Scholar
  23. 23.
    Dong HY, Zhu XJ, Lu K (2008) J Mater Sci 43:4247. doi: https://doi.org/10.1007/s10853-008-2615-0 CrossRefGoogle Scholar
  24. 24.
    Lu K, Zhu X, Thin Solid Films (submitted)Google Scholar
  25. 25.
    ASTM Designation C1499-04 in American Society for Testing and Materials International (2004) West Conshocken, PA, pp 767–777Google Scholar
  26. 26.
  27. 27.
    Skrinjar O, Larsson PL (2004) Acta Mater 52:1871CrossRefGoogle Scholar
  28. 28.
    Benson DJ, Nesterenko VF, Jonsdottir F, Meyers MA (1997) J Mech Phys Solids 45:1955CrossRefGoogle Scholar
  29. 29.
    Eakins DE, Thadhani NN (2008) Acta Mater 56:1496CrossRefGoogle Scholar
  30. 30.
    Antony SJ, Kuhn MR, Barton DC, Bland R (2005) J Phys D 38:3944CrossRefGoogle Scholar
  31. 31.
    Mamalis AG, Vottea IN, Manolakos DE (2001) J Mater Process Technol 108:165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Utron, Inc.ManassasUSA

Personalised recommendations