Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 778–785 | Cite as

Evaluation of elastic properties of reduced NiO-8YSZ anode-supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments

  • S. Biswas
  • T. Nithyanantham
  • N. T. Saraswathi
  • S. Bandopadhyay
Article

Abstract

Elastic properties of Ni-8YSZ anode-supported bi-layer SOFC structures were studied at elevated temperatures up to 1,000 °C in both ambient air and H2 environments. The anode samples with desired porosity and microstructure were fabricated by reducing a NiO-8YSZ anode precursor structure in a gas mixture of 5% H2–95% Ar at 800 °C for selected time periods up to 8 h. The development of the essential porous microstructure in forming the Ni-8YSZ cermet phase was analyzed with SEM. It was observed that the room temperature elastic moduli and hardness of the anode samples decrease significantly with increasing fraction of reduced NiO. Since the elastic properties of fully dense Ni, NiO, and 8YSZ are comparable to each other, the decrease in the magnitude in elastic moduli and hardness is evidently due to the colossal increase in porosity in the reduced Ni-8YSZ cermet anodes because of the reduction of NiO to Ni. At elevated temperatures, the Ni-8YSZ anodes show a complex profile of Young’s modulus as a function of temperature, which is significantly different from the unreduced NiO-8YSZ samples. When studied in ambient air, the Young’s modulus of the Ni-8YSZ samples decrease slowly up to ~250 °C, then more rapidly from 250 to 550 °C, and finally it increases monotonically with the increase in temperature. However, in reducing environment, the Young’s moduli values decrease continuously throughout the temperature range. Two sets of samples of different thicknesses were studied simultaneously to highlight the effects of the sample thickness on the elastic properties of the anodes.

Keywords

Thick Sample Electrolyte Layer Anode Layer Triple Phase Boundary Anode Sample 

Notes

Acknowledgements

This work was carried out with the financial support from the United States Department of Energy project grant # DE-FG36-05GO15194. The authors sincerely thank Materials and Systems Research, Inc., Salt Lake City, USA for providing the samples.

References

  1. 1.
    Selcuk A, Atkinson A (1997) J Eur Ceram Soc 17:1523CrossRefGoogle Scholar
  2. 2.
    Selcuk A, Atkinson A (1999) Acta Mater 47:867CrossRefGoogle Scholar
  3. 3.
    Gutierrez-Mora F, Ralph JM, Routbort JL (2002) Solid State Ionics 149:177CrossRefGoogle Scholar
  4. 4.
    Radovic M, Lara-Curzio E (2004) J Am Ceram Soc 87:2242CrossRefGoogle Scholar
  5. 5.
    Radovic M, Lara-Curzio E (2004) Acta Mater 52:5747CrossRefGoogle Scholar
  6. 6.
    Wang Y, Walter ME, Sabolsky K, Seabaugh MM (2006) Solid State Ionics 177:1517CrossRefGoogle Scholar
  7. 7.
    Yu JH, Park GW, Lee S, Woo SK (2007) J Power Sources 163:926CrossRefGoogle Scholar
  8. 8.
    Giraud S, Canel J (2008) J Eur Ceram Soc 28:77CrossRefGoogle Scholar
  9. 9.
    Setoguchi T, Okamoto K, Eguchi K, Arai H (1992) J Electrochem Soc 139:2875CrossRefGoogle Scholar
  10. 10.
    Jiang SP, Badwal SPS (1997) J Electrochem Soc 144:3777CrossRefGoogle Scholar
  11. 11.
    Jiang SP, Chan SH (2004) Mater Sci Tech 20:1109CrossRefGoogle Scholar
  12. 12.
    Tsoga A, Naomidis A, Nikolopoulos P (1996) Acta Mater 44:3679CrossRefGoogle Scholar
  13. 13.
    Ramanathan S, Krishnakumar KP, De PK, Banerjee S (2004) J Mater Sci 39:3339. doi: https://doi.org/10.1023/B:JMSC.0000026934.88520.67 CrossRefGoogle Scholar
  14. 14.
    Marinek M, Zupan K, Macek J (2000) J Power Sources 86:383CrossRefGoogle Scholar
  15. 15.
    Lee JH, Moon H, Lee HW, Kim J, Kim JD, Yoon KH (2002) Solid State Ionics 148:15CrossRefGoogle Scholar
  16. 16.
    Zhu WZ, Deevi SC (2003) Mater Sci Eng A Struct Mater 362:228CrossRefGoogle Scholar
  17. 17.
    Selcuk A, Atkinson A (2000) Solid State Ionics 134:59CrossRefGoogle Scholar
  18. 18.
    Selcuk A, Atkinson A (2000) J Am Ceram Soc 83:2029CrossRefGoogle Scholar
  19. 19.
    Radovic M, Lara-Curzio E, Armstrong B, Walls C (2003) Ceram Eng Sci Proc 24:329CrossRefGoogle Scholar
  20. 20.
    Nithyanantham T, Saraswathi NT, Biswas S, Bandopadhyay S, J Power Sources (Communicated)Google Scholar
  21. 21.
    de Boer B, Gonzalez M, Bouwmeester HJM, Verweij H (2000) Solid State Ionics 127:269CrossRefGoogle Scholar
  22. 22.
    Liu C, Lebrun JL, Huntz AM (1993) Mater Sci Eng A 160:113CrossRefGoogle Scholar
  23. 23.
    Samuel Smart J, Greenwald S (1951) Phys Rev 82:113CrossRefGoogle Scholar
  24. 24.
    Toussaint CJ (1971) J Appl Cryst 4:293CrossRefGoogle Scholar
  25. 25.
    Wachtman JB, Jam DG (1959) J Am Ceram Soc 42:254CrossRefGoogle Scholar
  26. 26.
    Sakaguchi S, Murayama N, Kodama Y, Wakai F (1991) J Mater Sci Lett 10:282CrossRefGoogle Scholar
  27. 27.
    Adams JW, Ruh R, Mazdiyasni KS (1997) J Am Ceram Soc 80:903CrossRefGoogle Scholar
  28. 28.
    Roebben G, Basu B, Vleugels J, van der Biest O (2003) J Eur Ceram Soc 23:481CrossRefGoogle Scholar
  29. 29.
    Shimada M, Matsushita K, Kuratani S, Okamoto T, Koizumi M, Tsukuma K, Tsukidate T (1984) J Am Ceram Soc 67:C23CrossRefGoogle Scholar
  30. 30.
    Lakki A, Herzog R, Weller M, Schubert H, Reetz C, Gorke O, Kilo M, Borchardt G (2000) J Eur Ceram Soc 20:285CrossRefGoogle Scholar
  31. 31.
    Weller M, Herzog R, Kilo M, Borchardt G, Weber S, Scherrer S (2004) Solid State Ionics 175:409CrossRefGoogle Scholar
  32. 32.
    Weller M, Khelfaoui F, Kilo M, Taylor MA, Argirusis C, Borchardt G (2004) Solid State Ionics 175:329CrossRefGoogle Scholar
  33. 33.
    Ingel RP, Lewis D (1988) J Am Ceram Soc 71:265CrossRefGoogle Scholar
  34. 34.
    Rice RW (1994) J Mater Sci Lett 13:1261CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Biswas
    • 1
  • T. Nithyanantham
    • 1
  • N. T. Saraswathi
    • 1
  • S. Bandopadhyay
    • 1
  1. 1.College of Engineering and MinesUniversity of AlaskaFairbanksUSA

Personalised recommendations