Journal of Materials Science

, Volume 44, Issue 3, pp 816–820 | Cite as

Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots

  • Qiangbin Wang
  • Dong-Kyun SeoEmail author


We report preparation of highly photoluminescent CdSe@ZnS quantum dot-polystyrene composite beads, by employing stepwisely: (1) a simultaneous ZnS shell formation and ligand exchange with 3-mercaptopropyltrimethoxy silane (MPS); (2) coupling MPS with polymerizable 3-(trimethoxysily)propylmethacrylate (MPM); and (3) polymerization of the resulting MPM–MPS capped CdSe@ZnS quantum dots with styrene molecules. The functionalized quantum dots exhibited robust chemical stability against the harsh radical polymerization condition and the resulting polymer microbeads were strong against photobleaching under an intense and continuous laser.


Composite Bead CdSe Core Propylmethacrylate Intense Laser Beam Polymerizable Functional Group 



D.-K.·S. is grateful for financial support from the National Science Foundation through his CAREER Award (DMR Contract No. 0239837) and the Camille and Henry Dreyfus Foundation for his Camille Dreyfus Teacher-Scholar Award. The authors thank Dr. Douglas Daniel for his help in confocal microscopy studies.


  1. 1.
    Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631CrossRefGoogle Scholar
  2. 2.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759CrossRefGoogle Scholar
  3. 3.
    Pelligrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Rädler J, Natile G, Park WJ (2004) Nano Lett 4:703CrossRefGoogle Scholar
  4. 4.
    Li Y, Liu CY, Pickett N, Skaba PJ, Cummins SS, Ryley S, Sutherland AJ, O’Brien P (2005) J Mater Chem 15:1238Google Scholar
  5. 5.
    Allen CN, Lequex N, Chassenieux C, Tessier G, Dubertret B (2007) Adv Mater 19:4420CrossRefGoogle Scholar
  6. 6.
    Sheng W, Kim S, Lee J, Kim S-W, Jensen K, Bawendi MG (2006) Langmuir 22:3782CrossRefGoogle Scholar
  7. 7.
    Petruska MA, Malko AV, Voyles PM, Klimov VI (2003) Adv Mater 15:610CrossRefGoogle Scholar
  8. 8.
    Kalyuzhny G, Murrary RW (2005) J Phys Chem B 109:7012CrossRefGoogle Scholar
  9. 9.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861CrossRefGoogle Scholar
  10. 10.
    Wang Q, Iancu N, Seo D-K (2005) Chem Mater 17:4762CrossRefGoogle Scholar
  11. 11.
    Iancu N, Sharma R, Seo D-K (2004) Chem Comm 2298Google Scholar
  12. 12.
    Wang Q, Seo D-K (2006) Chem Mater 18:5764CrossRefGoogle Scholar
  13. 13.
    Wang Q, Xu Y, Zhao X, Chang Y, Liu Y, Jiang L, Sharma J, Seo D-K, Yan H (2007) J Am Chem Soc 129:6380CrossRefGoogle Scholar
  14. 14.
    Williams ATR, Winfield SA, Miller JN (1983) Analyst 108:1067CrossRefGoogle Scholar
  15. 15.
    Demas JN, Crosby GA (1971) J Phys Chem 75:991CrossRefGoogle Scholar
  16. 16.
    Kubin RF, Fletcher AN (1982) J Luminescence 27:455CrossRefGoogle Scholar
  17. 17.
    Socrates G (1980) Infrared characteristic group frequencies. Wiley, New YorkGoogle Scholar
  18. 18.
    Skaff H, Sill K, Emrick T (2004) J Am Chem Soc 126:11322CrossRefGoogle Scholar
  19. 19.
    Lee J, Sundar V, Heine J, Bawendi MG, Jemsen KF (2000) Adv Mater 12:1102CrossRefGoogle Scholar
  20. 20.
    Plueddemann EP (1982) Silane coupling agents. Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Suzhou Institute of Nano Tech and Nano Bionics, Chinese Academy of ScienceSuzhouP. R. China
  2. 2.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations