Journal of Materials Science

, Volume 44, Issue 3, pp 843–848 | Cite as

Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation

  • Jong-Jin ChoiEmail author
  • Jungho Ryu
  • Byung-Dong Hahn
  • Woon-Ha Yoon
  • Byoung-Kuk Lee
  • Dong-Soo Park


Conducting ceramic layers with a spinel structure of MnCo2O4 and a thickness of ~3 μm were deposited on ferritic stainless steel (SS) by aerosol deposition (AD), for use as an oxidation-resistant coating layer on the metallic interconnects of a solid oxide fuel cell (SOFC). The microstructural changes in the interface between the MnCo2O4 and SS were analyzed, as were the subsequent electrical conductivity changes at an SOFC operating temperature of 800 °C in air. The coated spinel layers were dense without pores or cracks, and maintained good adhesion even after oxidation at 800 °C for 1,000 h in air atmosphere. Close observation of the interface between the coated spinel oxide and SS substrate indicated the presence of ~1-μm thick, Cr-rich scale formation; however no MnCrCoO4 or MnCr2O4 spinel phase was detected. The area specific resistance (ASR) of the MnCo2O4-coated alloy after heat treatment at 800 °C for 1,000 h was 13.4 mΩ cm2.


Oxide Scale Solid Oxide Fuel Cell Ferritic Stainless Steel Stainless Steel Substrate Aerosol Deposition 



This work was financially supported by the Ministry of Knowledge Economy, Republic of Korea, through the Component-Material development programme.


  1. 1.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cell. Elsevier Science, Amsterdam, The NetherlandsGoogle Scholar
  2. 2.
    Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Solid State Ionics 131:79CrossRefGoogle Scholar
  3. 3.
    Zhu WZ, Deevi SC (2003) Mater Sci Eng A348:227CrossRefGoogle Scholar
  4. 4.
    Horita T, Xiong Y, Yamaji K, Sakai N (2003) J Electrochem Soc 150(3):A243CrossRefGoogle Scholar
  5. 5.
    Simner SP, Anderson MD, Xia G-G, Yang Z, Pederson LR, Stevenson JW (2005) J Electrochem Soc 152(4):A740CrossRefGoogle Scholar
  6. 6.
    Yang Z, Xia G, Singh P, Stevenson JW (2006) J Power Sources 155:246CrossRefGoogle Scholar
  7. 7.
    Quadkkers WJ, Greiner H, Hansel M, Pattanaik A, Khanna AS, Mallener W (1996) Solid State Ionics 91:55CrossRefGoogle Scholar
  8. 8.
    Lim DP, Lim DS, Oh JS, Lyo IW (2005) Surf Coat Technol 200:1248CrossRefGoogle Scholar
  9. 9.
    Kim JH, Song RH, Hyun SH (2004) Solid State Ionics 174:185CrossRefGoogle Scholar
  10. 10.
    Choi JJ, Lee JH, Park DS, Hahn BD, Yoon WH, Lin HT (2007) J Am Ceram Soc 90(6):1926CrossRefGoogle Scholar
  11. 11.
    Yang Z, Xiz G, Simner SP, Stevenson JW (2005) J Electrochem Soc 152(9):A1896CrossRefGoogle Scholar
  12. 12.
    Choi JJ, Park DS, Hahn BD, Ryu J, Yoon WH (2008) J Am Ceram Soc 91(8):2601CrossRefGoogle Scholar
  13. 13.
    Akedo J (2006) J Am Ceram Soc 89(6):1834CrossRefGoogle Scholar
  14. 14.
    Choi JJ, Hahn BD, Ryu J, Yoon WH, Park DS (2007) J Appl Phys 102:044101CrossRefGoogle Scholar
  15. 15.
    Chen X, Hou PY, Jacobson CP, Visco SJ, Jonghe LCD (2005) Solid State Ionics 176:425CrossRefGoogle Scholar
  16. 16.
    Zhu WZ, Deevi SC (2003) Mater Res Bull 38:957CrossRefGoogle Scholar
  17. 17.
    Wu J, Johnson CD, Jiang Y, Gemmen RS, Liu X (2008) Electrochim Acta 54:793CrossRefGoogle Scholar
  18. 18.
    Bordeneuve H, Guillemet-Fritsch S, Rousset A, Schuurman S, Poulain V, J Solid State Chem. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jong-Jin Choi
    • 1
    Email author
  • Jungho Ryu
    • 1
  • Byung-Dong Hahn
    • 1
  • Woon-Ha Yoon
    • 1
  • Byoung-Kuk Lee
    • 1
  • Dong-Soo Park
    • 1
  1. 1.Functional Ceramics Research Group, Department of Powder MaterialsKorea Institute of Materials ScienceChangwonSouth Korea

Personalised recommendations