Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 408–413 | Cite as

The variation of beta phase morphology after creep and negative creep for duplex titanium alloys

  • Shing-Hoa WangEmail author
  • Hao-Hsun Lee
  • Chih-Yuan Chen
  • Jer-Ren Yang
  • Chin-Hai Kao
Article

Abstract

The creep resistance of SP700 (Ti–4.5Al–3V–2Mo–2Fe) is superior to Ti–6–4 (Ti–6Al–4V) at 500 °C under a constant load corresponding to an initial stress of 100 MPa. The β phase grains in the SP700 alloy prefer to orient along the loading axis in contrast to the Ti–6–4 alloy. The grain growth occurs during the stress drop incubation period. The observation of different amounts of negative creep/anelasticity upon loading is closely associated with the difference in the amount of grain/subgrain coarsening.

Keywords

Titanium Alloy Internal Stress Creep Rate Creep Strain Stress Drop 

Notes

Acknowledgement

This work was carried out with financial support from the National Science Council of the ROC, Taiwan, under the grants of NSC-94-2216-E-019-017 and NSC-95-2221-E-019-019. The authors gratefully acknowledge this support.

References

  1. 1.
    Leyens C, Peters M (2003) Titanium and titanium alloys fundamental and applications. Wiley-VCH Verlag, Weinheim, Germany, p 16CrossRefGoogle Scholar
  2. 2.
    Collings EW (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, Ohio, p 488Google Scholar
  3. 3.
    Ouchi C, Minakawa K (1992) NKK Tech Rev 65:p61Google Scholar
  4. 4.
    Ouchi C, Fukai H (1999) Mat Sci Eng A 263:132CrossRefGoogle Scholar
  5. 5.
    Ogawa A, Iizumi H (1996) Superplasticity and post-spf properties of SP-700. In: Proceedings of the conference Titanium ’95: science and technology, vol I, Birmingham, UK, 22–26 October 1995, p 588Google Scholar
  6. 6.
    Takeda J, Niinomi M (2004) Int J Fatigue 26:1003CrossRefGoogle Scholar
  7. 7.
    Barboza MJR, Moura Neto C (2004) Mat Sci Eng A 369:201CrossRefGoogle Scholar
  8. 8.
    Seco FJ, Irisarri AM (2001) Fatigue Fract Eng M 24:741CrossRefGoogle Scholar
  9. 9.
    Koike J, Maruyama K (1999) Mat Sci Eng A 263:155CrossRefGoogle Scholar
  10. 10.
    Comley PN (2004) J Mater Eng Perform 13(6):660CrossRefGoogle Scholar
  11. 11.
    Gunawarman A, Niinomi M (2001) Mater Sci Eng A 308:216CrossRefGoogle Scholar
  12. 12.
    Barboza MJR, Moura Neto C, Silva CRM (2004) Mater Sci Eng A 369:201CrossRefGoogle Scholar
  13. 13.
    Kruml T, Coddet O (2004) Mater Sci Eng A 387–389:72CrossRefGoogle Scholar
  14. 14.
    Ahlquist CN, Nix WD (1971) Acta Metall 19:373CrossRefGoogle Scholar
  15. 15.
    Lee HH (2008) The microstructure of high temperature deformation and welding residual stress analysis of titanium alloys. Master Thesis, National Taiwan Ocean University, Keelung, Taiwan, JulyGoogle Scholar
  16. 16.
    Es-Souni M (2001) Mater Charact 46(5):365CrossRefGoogle Scholar
  17. 17.
    Poirier JP (1977) Acta Metall 25:913CrossRefGoogle Scholar
  18. 18.
    Zhang WJ, Deevi SC (2002) Intermetallics 10:603CrossRefGoogle Scholar
  19. 19.
    Kim JS, Kim JH (1999) Mat Sci Eng A 263:272CrossRefGoogle Scholar
  20. 20.
    Blum W (2001) Mater Sci Eng A 319–321:8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Shing-Hoa Wang
    • 1
    Email author
  • Hao-Hsun Lee
    • 1
  • Chih-Yuan Chen
    • 2
  • Jer-Ren Yang
    • 2
  • Chin-Hai Kao
    • 3
  1. 1.Department of Mechanical EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
  2. 2.Institute of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.S-Tech CorporationTainanTaiwan

Personalised recommendations