Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 855–860 | Cite as

Low-temperature sintering of ZrW2O8–SiO2 by spark plasma sintering

  • Kenji KanamoriEmail author
  • Tohru Kineri
  • Ryohei Fukuda
  • Takafumi Kawano
  • Keishi Nishio
Article

Abstract

Amorphous ZrW2O8 powder and amorphous SiO2 powder were prepared by a sol–gel process as raw materials, and high-density ZrW2O8–SiO2 were successfully prepared at a much lower temperature of 923 K for a much shorter holding time of 10 min by spark plasma sintering (SPS) method rather than by conventional melt-quenching method. The relative densities of 0.85ZrW2O8–0.15SiO2 and 0.70ZrW2O8–0.30SiO2 were 99.4% and 96.6%, respectively. The combined technique of a sol–gel process and SPS should enable us to prepare the varied types of high-density composites of ZrW2O8 without severe thermal cracking caused by melt-quenching. The thermal expansion properties and dielectric properties of ZrW2O8–SiO2 were also investigated.

Keywords

SiO2 Spark Plasma Sinter Amorphous SiO2 Thermal Expansion Property Migration Loss 

Notes

Acknowledgement

The authors gratefully thank Mr. M. Hashimoto, Yamaguchi Prefectural Industrial Technology Institute, for helpful suggestions and numerous discussions.

References

  1. 1.
    Sleight AW (1995) Endeavour 19:64CrossRefGoogle Scholar
  2. 2.
    Mary TA, Evans JSO, Vogt T et al (1996) Science 272:90CrossRefGoogle Scholar
  3. 3.
    Sleight AW (1998) Inorg Chem 37:2854CrossRefGoogle Scholar
  4. 4.
    Evans JSO, Mary TA, Sleight AW (1998) Physica B 241–243:311Google Scholar
  5. 5.
    Chang LLY, Scroger MG, Phillips B (1967) J Am Ceram Soc 50:211CrossRefGoogle Scholar
  6. 6.
    Graham J, Wadsley AD, Weymouth JH et al (1959) J Am Ceram Soc 42:570CrossRefGoogle Scholar
  7. 7.
    Martinek C, Hummel FA (1968) J Am Ceram Soc 51:227CrossRefGoogle Scholar
  8. 8.
    Morito Y, Wang S, Ohshima Y et al (2002) J Ceram Soc Jpn 110:544CrossRefGoogle Scholar
  9. 9.
    Xing X, Xing Q, Yu R et al (2006) Physica B 371:81CrossRefGoogle Scholar
  10. 10.
    Xing Q, Xing X, Yu R et al (2005) J Cryst Growth 283:208CrossRefGoogle Scholar
  11. 11.
    Kameswari U, Sleight AW, Evans JSO (2000) Int J Inorg Mater 2:333CrossRefGoogle Scholar
  12. 12.
    Closmann C, Sleight AW, Haygarth JC (1998) J Solid State Chem 139:424CrossRefGoogle Scholar
  13. 13.
    Wilkinson AP, Lind C, Pattanaik S (1999) Chem Mater 11:101CrossRefGoogle Scholar
  14. 14.
    Anselmi-Tamburini U, Gennari S, Garay JE et al (2005) Mater Sci Eng A 394:139CrossRefGoogle Scholar
  15. 15.
    Nygren M, Shen Z (2003) Solid State Sci 5:125CrossRefGoogle Scholar
  16. 16.
    Shen Z, Johnsson M, Zhao Z et al (2002) J Am Ceram Soc 85:1921CrossRefGoogle Scholar
  17. 17.
    Chaim R, Shen ZJ, Nygren M (2004) J Mater Res 19:2527CrossRefGoogle Scholar
  18. 18.
    Cha SI, Hong SH, Kim BK (2003) Mater Sci Eng A 351:31CrossRefGoogle Scholar
  19. 19.
    Omori M (2000) Mater Sci Eng A 287:183CrossRefGoogle Scholar
  20. 20.
    Gupta TK, Jean JH (1996) J Mater Res 11:243CrossRefGoogle Scholar
  21. 21.
    Niwa E, Wakamiko S, Ichikawa T et al (2004) J Ceram Soc Jpn 112:271CrossRefGoogle Scholar
  22. 22.
    Lommens P, Meyer CD, Bruneel E et al (2005) J Eur Ceram Soc 25:3605CrossRefGoogle Scholar
  23. 23.
    Yang X, Xu J, Li H et al (2007) J Am Ceram Soc 90:1953CrossRefGoogle Scholar
  24. 24.
    Buysser KD, Lommens P, Meyer CD et al (2004) Ceram-Silik 48:139Google Scholar
  25. 25.
    Yang X, Cheng X, Yan X et al (2007) Compos Sci Technol 67:1167CrossRefGoogle Scholar
  26. 26.
    Yilmaz S (2002) J Phys 14:365Google Scholar
  27. 27.
    Yilmaz S, Dunand DC (2004) Compos Sci Technol 64:1895CrossRefGoogle Scholar
  28. 28.
    Tani J, Kimura H, Hirota K et al (2007) J Appl Polym Sci 106:3343CrossRefGoogle Scholar
  29. 29.
    Kanamori K, Kineri T, Fukuda R et al (2008) J Am Ceram Soc. doi: https://doi.org/10.1111/j.1551-2916.2008.02726.x CrossRefGoogle Scholar
  30. 30.
    Evans JSO, Mary TA, Vogt T et al (1996) Chem Mater 8:2809CrossRefGoogle Scholar
  31. 31.
    Bertoluzza A, Fagnano C, Morelli MA (1982) J Non-Cryst Solids 48:117CrossRefGoogle Scholar
  32. 32.
    Nishio K, Kawahara T, Fukuda R et al (2007) J Soc Inorg Mater Jpn 14:69Google Scholar
  33. 33.
    Hashimoto T, Katsube T, Morito Y (2000) Solid State Commun 116:129CrossRefGoogle Scholar
  34. 34.
    Hasselman DPH, Donaldson KY, Anderson EM et al (1993) J Am Ceram Soc 76:2180CrossRefGoogle Scholar
  35. 35.
    Lind C, Wilkinson AP (2002) J Sol–Gel Sci Technol 25:51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kenji Kanamori
    • 1
    Email author
  • Tohru Kineri
    • 2
  • Ryohei Fukuda
    • 3
  • Takafumi Kawano
    • 4
  • Keishi Nishio
    • 5
  1. 1.Graduate School of Science and EngineeringTokyo University of Science, YamaguchiSanyo-Onoda-shiJapan
  2. 2.Department of Materials Science and Environmental EngineeringTokyo University of Science, YamaguchiSanyo-Onoda-shiJapan
  3. 3.Enhanced Ceramics Substrate DepartmentSumitomo Metal (SMI) Electronics Devices Inc.Mine-shiJapan
  4. 4.Inorganic Specialty Products Research LaboratoryUbe Industries, Ltd.Ube-shiJapan
  5. 5.Department of Materials Science and TechnologyTokyo University of ScienceNoda-shiJapan

Personalised recommendations