Journal of Materials Science

, Volume 44, Issue 1, pp 55–63 | Cite as

Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques

  • Sara J. Palmer
  • Ray L. FrostEmail author


Bauxite refinery residues are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures. Chemically, it comprises, in varying amounts (depending upon the composition of the starting bauxite), oxides of iron and titanium, residual alumina, sodalite, silica, and minor quantities of other metal oxides. Bauxite residues are being neutralised by seawater in recent years to reduce the alkalinity in bauxite residue, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. A combination of X-ray diffraction (XRD) and vibrational spectroscopy techniques, including mid-infrared (IR), Raman, near-infrared (NIR), and UV–Visible, have been used to characterise bauxite residue and seawater neutralised bauxite residue. The ferric (Fe3+) ions within bauxite residue can be identified by their characteristic NIR bands, where ferric ions produce two strong absorption bands at 25,000 and 14,300 cm−1. The presence of adsorbed carbonate and hydroxide anions can be identified at around 5,200 and 7,000 cm−1, respectively, attributed to the 2nd overtone of the 1st fundamental overtones observed in the mid-IR spectra. The complex bands in the Raman and mid-IR spectra around 3,500 cm−1 are assigned to the OH-stretching vibrations of the various oxides present in bauxite residue, and water. The combination of carbonate and hydroxyl units and their fundamental overtones give rise to many of the features of the NIR spectra.


Calcite Hematite Boehmite Gibbsite Hydrotalcite 



The financial and infrastructure support of the Queensland Research and Development Centre (QRDC-RioTintoAlcan) and the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences is gratefully acknowledged.


  1. 1.
    Hind AR, Bhargava SK, Grocott SC (1999) Colloids Surf A 146:359CrossRefGoogle Scholar
  2. 2.
    Jamialahmadi M, Muller-Steinhagen H (1998) JOM 50:44Google Scholar
  3. 3.
    Chvedov D, Ostap S, Le T (2001) Colloids Surf A 182:131CrossRefGoogle Scholar
  4. 4.
    Menzies NW, Fulton IM, Morrell WJ (2004) J Environ Qual 33:1877CrossRefGoogle Scholar
  5. 5.
    Glenister DJ, Thornberg MR (1985) Chemica 85:100Google Scholar
  6. 6.
    Diaz B, Joiret S, Keddam M, Novoa XR, Perez MC, Takenouti H (2004) Electrochem Methods Corros Res 49:3039Google Scholar
  7. 7.
    Santona L, Castaldi P, Melis P (2006) J Hazard Mater 136:324CrossRefGoogle Scholar
  8. 8.
    Hanahan C, McConchie D, Pohl J, Creelman R, Clark M, Stocksiek C (2004) Environ Eng Sci 21:125CrossRefGoogle Scholar
  9. 9.
    McConchie D, Clark M, Hanahan C, Davies-McConchie F (2000) In: Proc 3rd Queensland environmental conference, Brisbane, Queensland, Australia, 2000, p 201Google Scholar
  10. 10.
    Sherman DM, Waite TD (1985) Am Mineral 70:1262Google Scholar
  11. 11.
    Palmer SJ, Frost RL, Godwin A, Nguyen T (2008) J Raman Spectrosc 39:395CrossRefGoogle Scholar
  12. 12.
    Kloprogge JT, Wharton D, Hickey L, Frost RL (2002) Am Mineral 87:623CrossRefGoogle Scholar
  13. 13.
    Castaldi P, Silvetti M, Santone L, Enzo S, Melis P (2008) Clays Clay Miner 56:461CrossRefGoogle Scholar
  14. 14.
    Porto SPS, Krishnan RS (1967) J Chem Phys 47:1009CrossRefGoogle Scholar
  15. 15.
    Hart TR, Adams SB, Tempkin H (1990) Phys Rev 41:7822CrossRefGoogle Scholar
  16. 16.
    Murad E (1997) Am Mineral 82:203CrossRefGoogle Scholar
  17. 17.
    Downs RT (2006) ‘The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Accessed 20 Nov 2006
  18. 18.
    Hermeler G, Buhl JC, Hoffmann W (1991) Catal Today 8:415CrossRefGoogle Scholar
  19. 19.
    Farmer VC (1974) The Infrared spectra of minerals. Mineralogical Society, LondonCrossRefGoogle Scholar
  20. 20.
    Frost RL, Kloprogge JT, Russell SC, Szetu J (1999) Appl Spectrosc 53:423CrossRefGoogle Scholar
  21. 21.
    Marel HW, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier Scientific Pub. Co, New YorkGoogle Scholar
  22. 22.
    Rochester CH, Topham SA (1979) J Chem Soc Faraday Trans 75:1073CrossRefGoogle Scholar
  23. 23.
    Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. Butterworths, LondonGoogle Scholar
  24. 24.
    Hunt GR, Ashley RP (1979) Econ Geol 74:1613CrossRefGoogle Scholar
  25. 25.
    Townsend TE (1987) J Geophys Res 92:1441CrossRefGoogle Scholar
  26. 26.
    Marfunin A (1979) Physics of minerals and inorganic materials: an introduction. Springer-Verlag, New YorkCrossRefGoogle Scholar
  27. 27.
    Rossman GR (1975) Am Mineral 60:698Google Scholar
  28. 28.
    Rossman GR (1976) Am Mineral 61:398Google Scholar
  29. 29.
    Tanabe Y, Sugano S (1954) J Phys Soc Jpn 9:753CrossRefGoogle Scholar
  30. 30.
    Reddy BJ, Frost RL (2007) J Near Infrared Spectrosc 15:115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations