Journal of Materials Science

, Volume 44, Issue 1, pp 74–83 | Cite as

Effect of Zn concentration on the microstructures and mechanical properties of extruded Mg–7Y–4Gd–0.4Zr alloys

  • Ke Liu
  • Jinghuai Zhang
  • Wei Sun
  • Xin Qiu
  • Huayi Lu
  • Dingxiang Tang
  • L. L. Rokhlin
  • F. M. Elkin
  • Jian MengEmail author


Microstructures and mechanical properties of the Mg–7Y–4Gd–xZn–0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg–7Y–4Gd–1.5Zn–0.4Zr alloys have the highest strength after aging at 220 °C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine β′ phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.


Magnesium Alloy Ultimate Tensile Strength Peak Hardness Energy Dispersive Spectroscopy Result Equilibrium Solid Solubility 



This project was supported by Hi-Tech Research and Development Program of China (2006AA03Z520), Chinese Academy of Sciences and Jilin Province, and Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow.


  1. 1.
    Kojima Y, Aizawa T, Kamado S, Higashi K (2003) Mater Sci Forum 3:419Google Scholar
  2. 2.
    Polmear IJ (1994) Mater Sci Technol 10:1CrossRefGoogle Scholar
  3. 3.
    Anyanwu IA, Kamado S, Kojima Y (2001) Mater Trans JIM 42:1206CrossRefGoogle Scholar
  4. 4.
    Anyanwu IA, Kamado S, Kojima Y (2001) Mater Trans JIM 42:1212CrossRefGoogle Scholar
  5. 5.
    Wei LY, Dunlop GL, Westengen H (1995) Metall Mater Trans A 26:1705CrossRefGoogle Scholar
  6. 6.
    Clark JB (1965) Acta Metall 13:1281CrossRefGoogle Scholar
  7. 7.
    Nie JF, Gao X, Zhu SM (2005) Scr Mater 53:1049CrossRefGoogle Scholar
  8. 8.
    Balasubramani N, Pillai UTS, Pai BC (2008) J Alloys Compd 460:1CrossRefGoogle Scholar
  9. 9.
    Yamasaki M, Anan T, Yoshimoto S, Kawamura Y (2005) Scr Mater 53:799CrossRefGoogle Scholar
  10. 10.
    Vostry P, Smola B, Stulikova I, Buch FV, Mordike BL (1999) Phys Status Solidi A 175:491CrossRefGoogle Scholar
  11. 11.
    Smola B, Stulikova I, Buch FV, Mordike BL (2002) Mater Sci Eng A 324:113CrossRefGoogle Scholar
  12. 12.
    Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Scr Mater 48:1023CrossRefGoogle Scholar
  13. 13.
    Gao X, He SM, Zeng XQ, Peng LM, Ding WJ, Nie JF (2006) Mater Sci Eng A 431:322CrossRefGoogle Scholar
  14. 14.
    Kawabata T, Matsuda K, Kamado S, Kojima Y, Ikeno S (2003) Mater Sci Forum 303:419Google Scholar
  15. 15.
    Yamada K, Ohkubo Y, Shiono M, Watanabe H, Kamado S, Kojima Y (2006) Mater Trans JIM 47:1066CrossRefGoogle Scholar
  16. 16.
    Padezhnova EM, Melnik EV, Miliyevskiy RA, Dobatkina TV, Kinzhibalo VV (1982) Russ Metall (Metally) (Engl Transl) 4:185Google Scholar
  17. 17.
    Luo ZP (2000) J Mater Sci Lett 19:813CrossRefGoogle Scholar
  18. 18.
    Zhang M, Zhu SJ, Chen GL, Zhang BF, Guan SK (2005) Found Tech 26:983Google Scholar
  19. 19.
    Liu JY, Zhang ZZ, Hua M, Ma LQ, Shen XD (2006) Found Tech 27:258Google Scholar
  20. 20.
    Yoshimoto S, Yamasaki M, Kawamura Y (2006) Mater Trans 47:959CrossRefGoogle Scholar
  21. 21.
    Itoi T, Seimiya T, Kawamura Y, Hirohashi M (2004) Scr Mater 51:107CrossRefGoogle Scholar
  22. 22.
    Poter DA, Eastering KE (1992) Phase transformations in metals and alloys. Chapman & Hall, LondonCrossRefGoogle Scholar
  23. 23.
    Mohri T, Mabuchi M, Nakamura N, Asahina T, Iwasaki H, Aizawa T, Higashi K (2000) Mater Sci Eng A 290:139CrossRefGoogle Scholar
  24. 24.
    Yang Z, Guo YC, Li JP, He F, Xia F, Liang MX (2008) Mater Sci Eng A 485:487CrossRefGoogle Scholar
  25. 25.
    Tan JC, Tan MJ (2003) Mater Sci Eng A 339:124CrossRefGoogle Scholar
  26. 26.
    Kim IJ, Bae DH, Kim DH (2003) Mater Sci Eng A 339:313CrossRefGoogle Scholar
  27. 27.
    He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ (2006) J Alloys Compd 421:309CrossRefGoogle Scholar
  28. 28.
    Lin L, Chen LJ, Liu Z (2008) J Mater Sci 43:4493. doi: CrossRefGoogle Scholar
  29. 29.
    Peng QM, Dong HW, Wang LD, Wu YM, Wang LM (2007) J Mater Sci 42:3908. doi: CrossRefGoogle Scholar
  30. 30.
    Aghion E, Gueta Y, Moscovitch N (2008) J Mater Sci 43:4870. doi: CrossRefGoogle Scholar
  31. 31.
    Honma T, Ohkubo T, Kamado S, Hono K (2007) Acta Mater 55:4137CrossRefGoogle Scholar
  32. 32.
    Suzuki M, Kimura T, Koike J, Maruyama K (2003) Scr Mater 48:997CrossRefGoogle Scholar
  33. 33.
    Lu YZ, Wang QD, Zeng XQ, Ding WJ, Zhai WQ, Zhu YP (2000) Mater Sci Eng A 278:66CrossRefGoogle Scholar
  34. 34.
    Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Mater Trans JIM 42:1172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ke Liu
    • 1
    • 2
  • Jinghuai Zhang
    • 1
    • 2
  • Wei Sun
    • 1
  • Xin Qiu
    • 1
  • Huayi Lu
    • 1
  • Dingxiang Tang
    • 1
  • L. L. Rokhlin
    • 3
  • F. M. Elkin
    • 3
  • Jian Meng
    • 1
    Email author
  1. 1.State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of ScienceBeijingChina
  3. 3.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations